|
|
@ -5,6 +5,13 @@ library(reshape2) |
|
|
|
library(Matrix) |
|
|
|
library(CitFuns) |
|
|
|
library(BDCIT) |
|
|
|
library(openCyto) |
|
|
|
library(flowCore) |
|
|
|
library(flowWorkspace) |
|
|
|
library(CytoML) |
|
|
|
library(ggcyto) |
|
|
|
|
|
|
|
filter<-dplyr::filter |
|
|
|
|
|
|
|
print(getwd()) |
|
|
|
source("../sqlFunctions.R", encoding = "UTF-8") |
|
|
@ -19,6 +26,8 @@ rna<-data.frame("UMID"="","UM"="") |
|
|
|
sqlInitialize(ruta="../ruta_database.R") |
|
|
|
|
|
|
|
|
|
|
|
# UI ---- |
|
|
|
|
|
|
|
ui <- fluidPage( |
|
|
|
|
|
|
|
# Application title |
|
|
@ -27,6 +36,8 @@ ui <- fluidPage( |
|
|
|
#sidebarLayout( |
|
|
|
#Navbar |
|
|
|
navbarPage("BDAccess", |
|
|
|
|
|
|
|
## Update ---- |
|
|
|
tabPanel("Update", |
|
|
|
sidebarPanel( |
|
|
|
selectInput("dbtype", "", selected="UM", choices=c("UM", "OV","CC")), |
|
|
@ -52,6 +63,8 @@ ui <- fluidPage( |
|
|
|
) |
|
|
|
) |
|
|
|
), |
|
|
|
|
|
|
|
## Visor ---- |
|
|
|
tabPanel("Visor", |
|
|
|
sidebarPanel( |
|
|
|
radioButtons("nhc", label = h3("Código"), |
|
|
@ -63,9 +76,35 @@ ui <- fluidPage( |
|
|
|
mainPanel( |
|
|
|
htmlOutput("report"), |
|
|
|
h3("Nitrogen"), |
|
|
|
tableOutput("nitrogen") |
|
|
|
tableOutput("nitrogen"), |
|
|
|
plotOutput("visorplot", height = "1000px") |
|
|
|
) |
|
|
|
), |
|
|
|
|
|
|
|
## Citometría ---- |
|
|
|
tabPanel("Citometría", |
|
|
|
sidebarPanel( |
|
|
|
selectInput("phenotype", "Tipo de análisis", selected="Pop", choices=c("Pop", "IC")), |
|
|
|
), |
|
|
|
mainPanel( |
|
|
|
tabsetPanel( |
|
|
|
tabPanel("Entrada", |
|
|
|
actionButton("goButtonDir","Selecciona directorio fenotipo"), |
|
|
|
textOutput("session"), |
|
|
|
hr(), |
|
|
|
actionButton("fcsconvert", "Convertir a fcs"), |
|
|
|
hr(), |
|
|
|
actionButton("pngexport", "Exportar informes"), |
|
|
|
actionButton("popexport", "Actualizar BBDD") |
|
|
|
), |
|
|
|
tabPanel("Visor", |
|
|
|
|
|
|
|
) |
|
|
|
) |
|
|
|
) |
|
|
|
), |
|
|
|
|
|
|
|
## scRNAseq ---- |
|
|
|
tabPanel("scRNAseq", |
|
|
|
sidebarPanel( |
|
|
|
textInput("sqlquery", label = "sqlquery", value = ""), |
|
|
@ -87,10 +126,11 @@ ui <- fluidPage( |
|
|
|
) |
|
|
|
|
|
|
|
# Define server logic required to draw a histogram |
|
|
|
# Server ---- |
|
|
|
server <- function(input, output) { |
|
|
|
|
|
|
|
## Update |
|
|
|
|
|
|
|
|
|
|
|
## Update ---- |
|
|
|
|
|
|
|
values <- reactiveValues() |
|
|
|
values[["DF"]]<-DF |
|
|
|
values[["samples"]]<-samples |
|
|
@ -618,8 +658,9 @@ server <- function(input, output) { |
|
|
|
} |
|
|
|
}) |
|
|
|
|
|
|
|
## Visor |
|
|
|
|
|
|
|
|
|
|
|
## Visor ---- |
|
|
|
|
|
|
|
output$report<-renderUI({ |
|
|
|
samples<-sqlFetch(dta, "samples") |
|
|
|
if (input$nhc == 1){samples_sel<-samples %>% filter(OVID == input$id)} |
|
|
@ -786,8 +827,206 @@ server <- function(input, output) { |
|
|
|
|
|
|
|
}) |
|
|
|
|
|
|
|
## scRNAseq |
|
|
|
output$visorplot<-renderPlot({ |
|
|
|
if (input$nhc == 3){ |
|
|
|
pops<-sqlFetch(dta, "POPULATIONS") |
|
|
|
|
|
|
|
g_pop<-pops %>% dplyr::filter(samples == input$id) %>% gather(pop,value,-samples) %>% |
|
|
|
mutate(pop=factor(pop, levels=c("CD45pos_Alive","T_cells","CD8","CD4","DN","NK", "B_cells", |
|
|
|
"CD45neg_LDneg","EpCAMneg_HLAIneg","EpCAMneg_HLAIpos","EpCAMpos_HLAIpos"))) %>% |
|
|
|
ggplot(aes(pop, value))+ |
|
|
|
geom_bar(stat="identity", color="black", fill="grey70")+ |
|
|
|
labs(title = input$id, y="% parent", x="")+ |
|
|
|
theme_bw()+ |
|
|
|
theme(axis.text.x = element_text(angle=90, hjust=1, vjust=0.5)) |
|
|
|
tl<-sqlFetch(dta, "IC") %>% filter(samples == input$id) |
|
|
|
|
|
|
|
mtl<-melt(tl, variable.name = "Receptors") |
|
|
|
mtl$Receptors<-as.character(mtl$Receptors) #Para poder depurar bien el texto, lo pasamos a tipo character |
|
|
|
mtl$Receptors<-gsub("n","-",mtl$Receptors, fixed = T) |
|
|
|
mtl$Receptors<-gsub("p","+",mtl$Receptors, fixed = T) |
|
|
|
mtl$Receptors<-gsub("_"," ",mtl$Receptors) |
|
|
|
mtl[mtl$value < 1, "Receptors"]<-"Other" |
|
|
|
mtl$Receptors<-gsub("[A-Z]*-*[0-9T]- *", "", mtl$Receptors) |
|
|
|
mtl$Receptors<-gsub("+ $", "", mtl$Receptors) |
|
|
|
mtl$Receptors[mtl$Receptors == ""]<-"All Negative" |
|
|
|
|
|
|
|
mtl$Receptors<-factor(mtl$Receptors) |
|
|
|
mtl$Population<-factor(mtl$Population, levels = c("CD8", "CD4")) |
|
|
|
|
|
|
|
# colorCount<-length(unique(mtl$Receptors)) |
|
|
|
# getPalette = colorRampPalette(RColorBrewer::brewer.pal(12, "Set3")) |
|
|
|
|
|
|
|
color<-c(c("CTLA4+ LAG3+ PD1+ TIGIT+ TIM3+"="black","All Negative"="white","Other"="grey50", "PD1+"="#C07AFF", "CTLA4+"="#3EB3DE","TIM3+"="#5EF551","LAG3+"="#DEBB3E","TIGIT+"="#FA7055"), |
|
|
|
c("CTLA4+ PD1+"="#6666FF","PD1+ TIM3+"="#849CA8", "LAG3+ PD1+"="#C47F9F","PD1+ TIGIT+"="#D259AA", "CTLA4+ TIM3+"="#4ED498", "CTLA4+ LAG3+"="#8EB78E", "CTLA4+ TIGIT+"="#9C929A", "LAG3+ TIM3+"="#9ED848", "TIGIT+ TIM3+"="#ACB353", "LAG3+ TIGIT+"="#EC964A"), |
|
|
|
c("CTLA4+ PD1+ TIGIT+"="#B86B6A","CTLA4+ PD1+ TIGIT+ TIM3+"="#B81515","LAG3+ PD1+ TIGIT+"="#007D8A", "PD1+ TIGIT+ TIM3+"="#D64545", "LAG3+ PD1+ TIGIT+ TIM3+"="#0f5860", "LAG3+ TIGIT+ TIM3+"="#50cad3")) |
|
|
|
|
|
|
|
g_IC<-ggplot(mtl, aes(samples, value, fill=Receptors))+ |
|
|
|
geom_bar(stat="summary", fun="sum",color="black")+ |
|
|
|
labs(x="Patient", y="% CD8+", fill="")+ |
|
|
|
facet_grid(.~Population)+ |
|
|
|
scale_fill_manual(values = color[levels(mtl$Receptors)[levels(mtl$Receptors) %in% unique(mtl$Receptors)]])+ |
|
|
|
theme_bw()+ |
|
|
|
theme(axis.text.x=element_text(angle=45, hjust=1)) |
|
|
|
ggpubr::ggarrange(g_pop, g_IC, heights = c(0.4, 0.6), ncol = 1) |
|
|
|
} |
|
|
|
}) |
|
|
|
|
|
|
|
|
|
|
|
## Citometría ---- |
|
|
|
|
|
|
|
observe({ |
|
|
|
if(input$goButtonDir > 0){ |
|
|
|
cito_dir<<-choose.dir() %>% gsub("\\","/",. ,fixed=T) %>% paste0("/") |
|
|
|
|
|
|
|
output$session <- renderText( |
|
|
|
cito_dir |
|
|
|
) |
|
|
|
} |
|
|
|
}) |
|
|
|
|
|
|
|
observeEvent(input$fcsconvert,{ |
|
|
|
route<-cito_dir |
|
|
|
|
|
|
|
files<-list.files(route, ".LMD") |
|
|
|
for (lmd in files){ |
|
|
|
fcs<-read.FCS(paste0(route,lmd), dataset = 2) |
|
|
|
# fcs@parameters$desc<-c("FS-A","SS-A", paste("FL",1:10,"-A", sep = ""), "TIME") |
|
|
|
# fcs@parameters$desc<-c("FS-H","FS-A","FS-W","SS-H","SS-A","TIME", paste("FL",1:10,"-A", sep = "")) |
|
|
|
keyword(fcs)['$FIL']<-paste0(gsub(".LMD","",lmd), ".fcs") |
|
|
|
write.FCS(fcs, paste0(route, gsub(".LMD","",lmd), ".fcs")) |
|
|
|
} |
|
|
|
}) |
|
|
|
|
|
|
|
observeEvent(input$pngexport,{ |
|
|
|
if (input$phenotype == "Pop"){ |
|
|
|
route<-cito_dir |
|
|
|
|
|
|
|
ws<-open_flowjo_xml(paste0(route,"Populations.wsp")) |
|
|
|
gs<-flowjo_to_gatingset(ws, name="All Samples") |
|
|
|
|
|
|
|
sampleNames(gs)<-sapply(sampleNames(gs), function(x) strsplit(x, "Pop ")[[1]][2]) %>% |
|
|
|
gsub("[[:space:]][0-9]*.fcs_.[0-9]*","", . , perl = T) |
|
|
|
|
|
|
|
for (samp in sampleNames(gs)){ |
|
|
|
print(samp) |
|
|
|
p<-autoplot(gs[[samp]], bins=64) |
|
|
|
ggsave(paste0(route, samp,".pop.png"),p,width = 10, height = 10) |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
if (input$phenotype == "IC"){ |
|
|
|
route<-cito_dir |
|
|
|
|
|
|
|
ws<-open_flowjo_xml(paste0(route,"IC.wsp")) |
|
|
|
gs<-flowjo_to_gatingset(ws, name="All Samples") |
|
|
|
|
|
|
|
sampleNames(gs)<-sapply(sampleNames(gs), function(x) strsplit(x, "ICs ")[[1]][2]) %>% |
|
|
|
gsub("[[:space:]][0-9]*.fcs_.[0-9]*","", . , perl = T) |
|
|
|
|
|
|
|
names<-sampleNames(gs) %>% gsub("ab|Ab|AB|iso|Iso|ISO| ","",.) %>% unique() |
|
|
|
|
|
|
|
nodes<-gs_get_pop_paths(gs) |
|
|
|
nodes_parent<-nodes[!grepl("CTLA4|LAG3|PD1|TIGIT|TIM3|root$", nodes)] |
|
|
|
nodes_cd4<-nodes[grepl("CTLA4$|LAG3$|PD1$|TIGIT$|TIM3$", nodes) & grepl("/CD4/",nodes)] |
|
|
|
nodes_cd8<-nodes[grepl("CTLA4$|LAG3$|PD1$|TIGIT$|TIM3$", nodes) & grepl("/CD8/",nodes)] |
|
|
|
|
|
|
|
for (id in names){ |
|
|
|
print(id) |
|
|
|
iso<-sampleNames(gs)[grepl(id, sampleNames(gs)) & grepl("iso",sampleNames(gs))] |
|
|
|
ab<-sampleNames(gs)[grepl(id, sampleNames(gs)) & grepl("ab",sampleNames(gs))] |
|
|
|
|
|
|
|
g1<-ggcyto_arrange(autoplot(gs[[ab]], nodes_parent, bins=128), nrow=1) |
|
|
|
g2<-ggcyto_arrange(autoplot(gs[[iso]], nodes_cd8, bins=64), nrow=1) |
|
|
|
g3<-ggcyto_arrange(autoplot(gs[[ab]], nodes_cd8, bins=64), nrow=1) |
|
|
|
g4<-ggcyto_arrange(autoplot(gs[[iso]], nodes_cd4, bins=64), nrow=1) |
|
|
|
g5<-ggcyto_arrange(autoplot(gs[[ab]], nodes_cd4, bins=64), nrow=1) |
|
|
|
g_all<-gridExtra::gtable_rbind(g1,g2,g3,g4,g5) |
|
|
|
ggsave(paste0(route,id,".IC.png"), g_all, width = 10, height = 10) |
|
|
|
} |
|
|
|
} |
|
|
|
}) |
|
|
|
|
|
|
|
observeEvent(input$popexport,{ |
|
|
|
if (input$phenotype == "Pop"){ |
|
|
|
route<-cito_dir |
|
|
|
|
|
|
|
ws<-open_flowjo_xml(paste0(route,"Populations.wsp")) |
|
|
|
gs<-flowjo_to_gatingset(ws, name="All Samples") |
|
|
|
|
|
|
|
sampleNames(gs)<-sapply(sampleNames(gs), function(x) strsplit(x, "Pop ")[[1]][2]) %>% |
|
|
|
gsub("[[:space:]][0-9]*.fcs_.[0-9]*","", . , perl = T) |
|
|
|
|
|
|
|
nodes<-sapply(strsplit(gs_get_pop_paths(gs), "/"), tail, 1) |
|
|
|
nodes<-nodes[grepl("_",nodes)] |
|
|
|
pop<-gs_pop_get_stats(gs, nodes=nodes,type="percent") %>% as.data.frame %>% mutate(percent=percent*100) |
|
|
|
|
|
|
|
pop[,"pop"]<-gsub("_","",pop$pop) |
|
|
|
pop$pop<-gsub(" ","_",pop$pop) |
|
|
|
pop$pop<-gsub("+","pos",pop$pop, fixed=T) |
|
|
|
pop$pop<-gsub("-","neg",pop$pop, fixed=T) |
|
|
|
pop<-rename(pop, "samples"="sample") |
|
|
|
pop$percent<-round(pop$percent, digits=2) |
|
|
|
pop_sp<-pop %>% spread(pop, percent) |
|
|
|
|
|
|
|
pop_sql<-sqlFetch(dta, "POPULATIONS") %>% slice(0) |
|
|
|
pop_sp<-pop_sp %>% merge(pop_sql, all=T) %>% select(colnames(pop_sql)) |
|
|
|
|
|
|
|
vartypes<-rep("Number", pop_sp %>% select(-samples) %>% colnames %>% length) |
|
|
|
names(vartypes)<-pop_sp %>% select(-samples) %>% colnames |
|
|
|
|
|
|
|
sqlSave(dta, pop_sp, tablename="POPULATIONS", append = T, varTypes = vartypes, rownames = F) |
|
|
|
print("Tabla POPULATIONS sincronizada.") |
|
|
|
} |
|
|
|
if (input$phenotype == "IC"){ |
|
|
|
route<-cito_dir |
|
|
|
|
|
|
|
ws<-open_flowjo_xml(paste0(route,"IC.wsp")) |
|
|
|
gs<-flowjo_to_gatingset(ws, name="All Samples") |
|
|
|
|
|
|
|
sampleNames(gs)<-sapply(sampleNames(gs), function(x) strsplit(x, "ICs ")[[1]][2]) %>% |
|
|
|
gsub("[[:space:]][0-9]*.fcs_.[0-9]*","", . , perl = T) |
|
|
|
|
|
|
|
nodes<-gs_get_pop_paths(gs) |
|
|
|
# nodes<-gsub("â\u0081»", "-", nodes) |
|
|
|
# nodes<-gsub("â\u0081º", "+", nodes) |
|
|
|
nodes<-nodes[grepl("CTLA4", nodes)] |
|
|
|
nodes<-nodes[!grepl("CD4$|CD8$|CTLA4$|TIM3$|PD1$|LAG3$|TIGIT$|/CTLA4â\u0081»$|/TIM3â\u0081»$|/PD1â\u0081»$|/LAG3â\u0081»$|/TIGITâ\u0081»$", nodes)] |
|
|
|
|
|
|
|
pop<-gs_pop_get_stats(gs, nodes=nodes,type="percent") %>% as.data.frame %>% mutate(percent=percent*100) |
|
|
|
pop$percent<-round(pop$percent, digits=2) |
|
|
|
|
|
|
|
pop$pop<-gsub("â\u0081»", "n", pop$pop) |
|
|
|
pop$pop<-gsub("â\u0081º", "p", pop$pop) |
|
|
|
pop$pop<-gsub(" ", "_", pop$pop) |
|
|
|
|
|
|
|
pop["Type"]<-"ab" |
|
|
|
pop[grepl("iso|ISO|Iso",pop$sample),"Type"]<-"iso" |
|
|
|
pop$sample<-gsub("iso|ISO|Iso|ab|AB|Ab| ","",pop$sample) |
|
|
|
|
|
|
|
pop_sp<-pop %>% spread(Type, percent) |
|
|
|
pop_sp["Net"]<-pop_sp$ab |
|
|
|
pop_sp[!grepl("CTLA4n_LAG3n_PD1n_TIGITn_TIM3n",pop_sp$pop),"Net"]<-pop_sp[!grepl("CTLA4n_LAG3n_PD1n_TIGITn_TIM3n",pop_sp$pop),"ab"]-pop_sp[!grepl("CTLA4n_LAG3n_PD1n_TIGITn_TIM3n",pop_sp$pop),"iso"] |
|
|
|
pop_sp$Net[pop_sp$Net < 0]<-0 |
|
|
|
pop_sp["Population"]<-str_extract(pop_sp$pop, "/CD[4,8]{1}/") %>% gsub("/","",.) |
|
|
|
pop_sp$pop<-sapply(strsplit(pop_sp$pop, "/"), tail, 1) |
|
|
|
|
|
|
|
pop_sp<-pop_sp %>% select(-ab,-iso) %>% spread(pop,Net) |
|
|
|
pop_sp$`CTLA4n_LAG3n_PD1n_TIGITn_TIM3n`<- pop_sp %>% select(-`CTLA4n_LAG3n_PD1n_TIGITn_TIM3n`) %>% group_by(sample,Population) %>% |
|
|
|
gather(pop, value, -sample,-Population) %>% summarise(n=100-sum(value)) %>% pull(n) |
|
|
|
pop_sp <- rename(pop_sp, "samples"="sample") |
|
|
|
|
|
|
|
vartypes<-rep("Number", pop_sp %>% select(-samples, -Population) %>% colnames %>% length) |
|
|
|
names(vartypes)<-pop_sp %>% select(-samples, -Population) %>% colnames |
|
|
|
|
|
|
|
sqlSave(dta, pop_sp, tablename="IC", append = T, varTypes = vartypes, rownames = F) |
|
|
|
print("Tabla IC sincronizada.") |
|
|
|
} |
|
|
|
}) |
|
|
|
|
|
|
|
|
|
|
|
## scRNAseq ---- |
|
|
|
|
|
|
|
output$PATID = renderUI({ |
|
|
|
observeEvent(input$goButton, {}) |
|
|
|
sc_cod<-sqlFetch(dta, "CNAG") %>% pull(CODIGO) |
|
|
|