|
|
- \name{gglegend}
- \alias{gglegend}
- \title{gglegend}
- \usage{
- gglegend(data, x, y, var, stat="median", color="black", ...)
- }
- \arguments{
- \item{data}{A data frame from where to take x and y axis, and the grouping variable.}
- \item{x}{The variable that will be used for X axis in the heatmap.}
- \item{y}{The variable that will be used for Y axis in the heatmap.}
- \item{value}{The variable that will be used for grouping the heatmap. The labels will be taken from it}
- \item{stat}{The statistical central test that will be used to calculate the label coordinates. "mean" or "median" are posible, defaulting to "median".}
- \item{color}{The color of the labels, "black" by default. If NULL, nothig will be passed to the geom_label so it may be taken from aesthetics.}
- \item{...}{Other arguments that will be passed to the geom_label function.}
- }
- \description{
- Generates a geom_label object with labels in the center of each population or agrupation.
- }
- \examples{
- library(tidyverse)
- library(Rtsne)
- library(Rphenograph)
- library(igraph)
-
- ## We will generate an example using tSNE and Phenograph algorithms, but can be applied to any other situation.
-
- iris_unique <- unique(iris) # Remove duplicates
- iris_matrix <- as.matrix(iris_unique[,1:4])
-
- # Set a seed if you want reproducible results
- set.seed(42)
- tsne_out <- Rtsne(iris_matrix,pca=FALSE,perplexity=30,theta=0.0) # Run TSNE
-
- rpheno<-Rphenograph(tsne_out$Y)
- df<-data.frame(as.data.frame(tsne_out$Y), "Clust"=factor(membership(rpheno[[2]])))
- head(df)
-
- ggplot(df, aes(V1,V2, color=Clust))+
- geom_point()+
- gglegend(df, V1, V2, Clust)+
- guides(color="none")
-
- }
|