Browse Source

Adaptada la función para permitir comparaciones entre elementos de la x, no sólo agrupados.

main
marcelcosta 2 years ago
parent
commit
389b97d3b4
1 changed files with 37 additions and 25 deletions
  1. +37
    -25
      R/ggstats_add_xy.R

+ 37
- 25
R/ggstats_add_xy.R

@ -1,11 +1,11 @@
ggstats_add_xy<-function(table_stat, table, group, xcol=NULL, y="max", bracket.offset=0.05, bracket.inspace=0.05, exclude_group=NULL){
ggstats_add_xy_test<-function(table_stat, table, xcol=NULL, group, y="max", bracket.offset=0.05, bracket.inspace=0.05, exclude_group=NULL){
## Adapted version to fit rstatix output
value.var<-table_stat[[1,".y."]]
if (is.null(xcol)){
x<-colnames(table_stat)[1]
}else{x<-xcol}
table[,group]<-as.factor(table[,group])
if(!is.null(group)){table[,group]<-as.factor(table[,group])}
table[,x]<-as.factor(table[,x])
if (is.null(exclude_group)){
table_agg<-table %>% group_by(.data[[x]])
@ -14,6 +14,7 @@ ggstats_add_xy<-function(table_stat, table, group, xcol=NULL, y="max", bracket.o
}
if (y == "max"){
agg<-table_agg %>% summarise(max=max(.data[[value.var]]))
if(!is.na(exclude_group)){agg<-table_agg %>% group_by(.data[[exclude_group]]) %>% summarise(max=max(.data[[value.var]]))}
}else if (y == "mean"){
agg<-table %>% group_by(.data[[x]],.data[[group]]) %>% summarise(mean=mean(.data[[value.var]])) %>% spread(group, mean)
agg<- data.frame(x=agg[,1], "max"=apply(agg[,2:ncol(agg)], 1, max, na.rm=T))
@ -30,33 +31,44 @@ ggstats_add_xy<-function(table_stat, table, group, xcol=NULL, y="max", bracket.o
group.list<-list()
count<-1
table_stat<-mutate(table_stat, {{x}}:=as.factor(.data[[x]]))
for (i in 1:nrow(table_stat)){group.list[[count]]<-c(table_stat %>% slice(i) %>% pull(group1),table_stat%>% slice(i) %>% pull(group2)); count<-count+1}
x.index<-sapply(table_stat %>% pull(x), function(y) which(levels(table_stat %>% pull(x)) == y))
t<-tibble("y.position"=merge(table_stat, agg ,sort=F)[,"max"]+diff(range(table[value.var], na.rm = T))*bracket.offset,
"groups"=group.list,
"x.temp"=x.index,
"xmin"=(match(table_stat %>% pull(x), levels(table[,x]))+0.75*((match(table_stat$group1, levels(table[,group]))-0.5)/length(levels(table[,group]))-0.5)),
"xmax"=match(table_stat %>% pull(x), unique(table[,x]))+0.75*((match(table_stat$group2, levels(table[,group]))-0.5)/length(levels(table[,group]))-0.5)
) %>% rename("x"="x.temp")
if(!is.null(group)){table_stat<-mutate(table_stat, {{x}}:=as.factor(.data[[x]]))}
if (!is.null(exclude_group)){
for (j in unique(pull(table_stat, all_of(exclude_group)))){
for (dia in unique(pull(table_stat,all_of(xcol)))){
if (stat.test %>% filter(p < 0.05) %>% filter(.data[[x]] == dia & .data[[exclude_group]] == j) %>% nrow() > 0){
t[table_stat[,x] == dia & table_stat[,exclude_group] == j,"y.position"]<-seq(t[table_stat[,x] == dia & table_stat[,exclude_group] == j,"y.position"][[1,1]],
t[table_stat[,x] == dia & table_stat[,exclude_group] == j,"y.position"][[1,1]]+diff(range(table[,value.var], na.rm = T))*bracket.inspace*(nrow(table_stat[table_stat[,x] == dia & table_stat[,exclude_group] == j,])-1),
by=diff(range(table[,value.var], na.rm = T))*bracket.inspace)
for (i in 1:nrow(table_stat)){
group.list[[count]]<-c(table_stat %>% slice(i) %>% pull(group1),table_stat%>% slice(i) %>% pull(group2))
count<-count+1
}
if(!is.null(group)){
x.index<-sapply(table_stat %>% pull(x), function(y) which(levels(table_stat %>% pull(x)) == y))
t<-tibble("y.position"=merge(table_stat, agg ,sort=F)[,"max"]+diff(range(table[value.var], na.rm = T))*bracket.offset,
"groups"=group.list,
"x.temp"=x.index,
"xmin"=(match(table_stat %>% pull(x), levels(table[,x]))+0.75*((match(table_stat$group1, levels(table[,group]))-0.5)/length(levels(table[,group]))-0.5)),
"xmax"=match(table_stat %>% pull(x), unique(table[,x]))+0.75*((match(table_stat$group2, levels(table[,group]))-0.5)/length(levels(table[,group]))-0.5)
) %>% rename("x"="x.temp")
}else{
t<-tibble("y.position"=merge(table_stat, agg ,sort=F)[,"max"]+diff(range(table[value.var], na.rm = T))*bracket.offset,
"groups"=group.list,
# "x.temp"=x.index,
)# %>% rename("x"="x.temp")
}
if (!is.null(group)){
if (!is.null(exclude_group)){
for (j in unique(pull(table_stat, all_of(exclude_group)))){
for (dia in unique(pull(table_stat,all_of(xcol)))){
if (stat.test %>% filter(p < 0.05) %>% filter(.data[[x]] == dia & .data[[exclude_group]] == j) %>% nrow() > 0){
t[table_stat[,x] == dia & table_stat[,exclude_group] == j,"y.position"]<-seq(t[table_stat[,x] == dia & table_stat[,exclude_group] == j,"y.position"][[1,1]],
t[table_stat[,x] == dia & table_stat[,exclude_group] == j,"y.position"][[1,1]]+diff(range(table[,value.var], na.rm = T))*bracket.inspace*(nrow(table_stat[table_stat[,x] == dia & table_stat[,exclude_group] == j,])-1),
by=diff(range(table[,value.var], na.rm = T))*bracket.inspace)
}
}
}
}
}else{
for (dia in unique(pull(table_stat,all_of(xcol)))){
t[table_stat[,x] == dia,"y.position"]<-seq(t[table_stat[,x] == dia,"y.position"][[1,1]],
t[table_stat[,x] == dia,"y.position"][[1,1]]+diff(range(table[,value.var], na.rm = T))*bracket.inspace*(nrow(table_stat[table_stat[,x] == dia,])-1),
by=diff(range(table[,value.var], na.rm = T))*bracket.inspace)
}else{
for (dia in unique(pull(table_stat,all_of(xcol)))){
t[table_stat[,x] == dia,"y.position"]<-seq(t[table_stat[,x] == dia,"y.position"][[1,1]],
t[table_stat[,x] == dia,"y.position"][[1,1]]+diff(range(table[,value.var], na.rm = T))*bracket.inspace*(nrow(table_stat[table_stat[,x] == dia,])-1),
by=diff(range(table[,value.var], na.rm = T))*bracket.inspace)
}
}
}
return(cbind(table_stat,t) %>% as_tibble)
}

Loading…
Cancel
Save