|
|
@ -1,4 +1,4 @@ |
|
|
|
ggcorrplot<-function(df, var, color="#FFFFFF00"){ |
|
|
|
ggcorrplot<-function(df, var, color="#FFFFFF00", stat="signif"){ |
|
|
|
m.df<-df %>% spread(Cyt, Value) %>% select(-pats) |
|
|
|
mcor<-cor(m.df, m.df, use="pairwise.complete.obs") # Por defecto usa el método de Pearson. |
|
|
|
mpval<-Hmisc::rcorr(as.matrix(m.df))$P |
|
|
@ -8,6 +8,10 @@ ggcorrplot<-function(df, var, color="#FFFFFF00"){ |
|
|
|
df.pval<-mpval %>% as.data.frame() %>% add_column(Var1=rownames(mpval),.before=1) %>% |
|
|
|
gather(Var2, Value, -Var1) |
|
|
|
|
|
|
|
if (stat=="signif"){ |
|
|
|
df.pval$Value<-gtools::stars.pval(df.pval$Value) |
|
|
|
} |
|
|
|
|
|
|
|
order<- mcor %>% as.data.frame() %>% add_column(Var1=rownames(mcor),.before=1) %>% clustsort |
|
|
|
|
|
|
|
ggplot(df, aes(Var1, Var2, fill=Value))+ |
|
|
|