|
|
@ -1,11 +1,19 @@ |
|
|
|
ggstats_add_xy<-function(table_stat, table, group, y="max", bracket.offset=0.05, bracket.inspace=0.05){ |
|
|
|
ggstats_add_xy<-function(table_stat, table, group, xcol=NULL, y="max", bracket.offset=0.05, bracket.inspace=0.05, exclude_group=NULL){ |
|
|
|
## Adapted version to fit rstatix output |
|
|
|
value.var<-table_stat[[1,".y."]] |
|
|
|
x<-colnames(table_stat)[1] |
|
|
|
if (is.null(xcol)){ |
|
|
|
x<-colnames(table_stat)[1] |
|
|
|
}else{x<-xcol} |
|
|
|
|
|
|
|
table[,group]<-as.factor(table[,group]) |
|
|
|
table[,x]<-as.factor(table[,x]) |
|
|
|
if (is.null(exclude_group)){ |
|
|
|
table_agg<-table %>% group_by(.data[[x]]) |
|
|
|
}else{ |
|
|
|
table_agg<-table %>% group_by(.data[[x]], .data[[exclude_group]]) |
|
|
|
} |
|
|
|
if (y == "max"){ |
|
|
|
agg<-table %>% group_by(.data[[x]]) %>% summarise(max=max(.data[[value.var]])) |
|
|
|
agg<-table_agg %>% summarise(max=max(.data[[value.var]])) |
|
|
|
}else if (y == "mean"){ |
|
|
|
agg<-table %>% group_by(.data[[x]],.data[[group]]) %>% summarise(mean=mean(.data[[value.var]])) %>% spread(group, mean) |
|
|
|
agg<- data.frame(x=agg[,1], "max"=apply(agg[,2:ncol(agg)], 1, max, na.rm=T)) |
|
|
@ -32,10 +40,22 @@ ggstats_add_xy<-function(table_stat, table, group, y="max", bracket.offset=0.05, |
|
|
|
"xmax"=match(table_stat %>% pull(x), unique(table[,x]))+0.75*((match(table_stat$group2, levels(table[,group]))-0.5)/length(levels(table[,group]))-0.5) |
|
|
|
) %>% rename("x"="x.temp") |
|
|
|
|
|
|
|
for (dia in unique(pull(table_stat,1))){ |
|
|
|
t[table_stat[,x] == dia,"y.position"]<-seq(t[table_stat[,x] == dia,"y.position"][[1,1]], |
|
|
|
t[table_stat[,x] == dia,"y.position"][[1,1]]+diff(range(table[,value.var], na.rm = T))*bracket.inspace*(nrow(table_stat[table_stat[,x] == dia,])-1), |
|
|
|
by=diff(range(table[,value.var], na.rm = T))*bracket.inspace) |
|
|
|
if (!is.null(exclude_group)){ |
|
|
|
for (j in unique(pull(table_stat, all_of(exclude_group)))){ |
|
|
|
for (dia in unique(pull(table_stat,all_of(xcol)))){ |
|
|
|
if (stat.test %>% filter(p < 0.05) %>% filter(.data[[x]] == dia & .data[[exclude_group]] == j) %>% nrow() > 0){ |
|
|
|
t[table_stat[,x] == dia & table_stat[,exclude_group] == j,"y.position"]<-seq(t[table_stat[,x] == dia & table_stat[,exclude_group] == j,"y.position"][[1,1]], |
|
|
|
t[table_stat[,x] == dia & table_stat[,exclude_group] == j,"y.position"][[1,1]]+diff(range(table[,value.var], na.rm = T))*bracket.inspace*(nrow(table_stat[table_stat[,x] == dia & table_stat[,exclude_group] == j,])-1), |
|
|
|
by=diff(range(table[,value.var], na.rm = T))*bracket.inspace) |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
}else{ |
|
|
|
for (dia in unique(pull(table_stat,all_of(xcol)))){ |
|
|
|
t[table_stat[,x] == dia,"y.position"]<-seq(t[table_stat[,x] == dia,"y.position"][[1,1]], |
|
|
|
t[table_stat[,x] == dia,"y.position"][[1,1]]+diff(range(table[,value.var], na.rm = T))*bracket.inspace*(nrow(table_stat[table_stat[,x] == dia,])-1), |
|
|
|
by=diff(range(table[,value.var], na.rm = T))*bracket.inspace) |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
return(cbind(table_stat,t) %>% as_tibble) |
|
|
|