| @ -0,0 +1,129 @@ | |||
| --- | |||
| title: "CitFuns" | |||
| output: rmarkdown::html_vignette | |||
| description: | | |||
| How to use CitFuns functions. | |||
| vignette: > | |||
| %\VignetteEngine{knitr::rmarkdown} | |||
| %\VignetteEncoding{UTF-8} | |||
| --- | |||
| ```{r setup, include=FALSE} | |||
| knitr::opts_chunk$set(echo = TRUE, message = F, warning = F, error = F) | |||
| ``` | |||
| ## Installation | |||
| In order to install CitFuns package from Git reppository, you must install `devtools` package: | |||
| ```{r, eval=F} | |||
| install.packages('devtools') | |||
| ``` | |||
| In order to install it, you will have to install (if not already done) [Rtools](https://cran.r-project.org/bin/windows/Rtools/rtools40.html). | |||
| You will also need [Git](https://git-scm.com/downloads) installed in your computer. | |||
| Now we are ready to install CitFuns package: | |||
| ```{r, eval=F} | |||
| devtools::install_git("https://git.ratg.cat/marcelcosta/CitFuns.git") | |||
| ``` | |||
| ## Update | |||
| Any time you want to update the package, you must *reinstall* it: | |||
| ```{r, eval=F} | |||
| detach("package:CitFuns", unload = TRUE) # Only required if you have loaded the package in this session. | |||
| devtools::install_git("https://git.ratg.cat/marcelcosta/CitFuns.git") | |||
| ``` | |||
| ## ggheatmap | |||
| **ggheatmap** generates ggplot heatmaps easily. | |||
| We start by loading required packages, including *CitFuns* | |||
| ```{r} | |||
| library(tidyverse) | |||
| library(CitFuns) | |||
| ``` | |||
| Now we will create an example dataframe: | |||
| ```{r} | |||
| df<-data.frame("pats"=paste0("PAT", 1:20), "CytA"=rnorm(20,5), "CytB"=rnorm(20,5), | |||
| "CytC"=c(rnorm(5,10),rnorm(5,5),rnorm(5,10),rnorm(5,5)),"CytD"=rnorm(20,5), | |||
| "CytE"=c(rnorm(5,10),rnorm(5,5),rnorm(5,10),rnorm(5,5)),"CytF"=rnorm(20,5), | |||
| "CytG"=c(rnorm(5,10),rnorm(5,5),rnorm(5,10),rnorm(5,5))) | |||
| df<-gather(df, Cyt, Value,-pats) | |||
| head(df) | |||
| ``` | |||
| Usually, this package works with the dataframes in **Long** format, as it is intended in ggplot workflow. | |||
| And now we will generate the heatmap. | |||
| ```{r, fig.width=8} | |||
| ggheatmap(df) | |||
| ``` | |||
| As we can observe, X and Y axis are sorted by cluster detection (using *hclust*). | |||
| *ggheatmap* groups the results if more there is more than one observation for each X-Y coordinate. By default, it calculates the mean, but the median can also be used instead. To show this, we will create another variable, "Met", and we plot Cytokine expression *versus* Met status. | |||
| ```{r, fig.width=8} | |||
| clinics<-data.frame("pats"=df$pats %>% unique, "Met"=rep(c("0","1"), 10)) | |||
| df<-merge(df, clinics) | |||
| ggheatmap(df, x="Cyt",y="Met", grouping = "median") | |||
| ``` | |||
| By default, *other variables not used are eliminated* during the grouping process. However, if you want to further use them (for faceting, for example), you can use the *exclude_group* parameter to keep them in the data.frame. | |||
| ```{r, fig.width=8} | |||
| ggheatmap(df, exclude_group = "Met")+facet_grid(.~Met, scales = "free") | |||
| ``` | |||
| Finally, you can scale the heatmap either by rows or by columns: | |||
| ```{r, fig.width=8} | |||
| ggheatmap(df, scale="rows") | |||
| ``` | |||
| It is worth noticing that ggheatmap outputs a ggplot object, so you can further modify it as you are used to: | |||
| ```{r, fig.width=8, fig.height=5} | |||
| ggheatmap(df)+ | |||
| scale_fill_gradient(low = "black", high = "yellow")+ | |||
| scale_y_discrete(position = "right")+ | |||
| theme(legend.position = "bottom") | |||
| ``` | |||
| ## ggcorrplot | |||
| ggcorrplot generates a correlation matrix. Using the same example dataframe, you have to specify which variable and value columns will be used to test correlation. | |||
| ```{r, fig.width=5, fig.height=4} | |||
| ggcorrplot(df, var = "Cyt", value = "Value") | |||
| ``` | |||
| You can specify a color for the tile lines, transparent by default: | |||
| ```{r, fig.width=5, fig.height=4} | |||
| ggcorrplot(df, var = "Cyt", value = "Value", color = "white") | |||
| ``` | |||
| By default, ggcorrplot converts the p-value into *star* significance equivalence. You can show the pvalue or nothing ("none"). | |||
| ```{r, fig.width=5, fig.height=4} | |||
| ggcorrplot(df, var = "Cyt", value = "Value", color = "white", stat="pval") | |||
| ``` | |||
| Finally, you can show only the upper part or the lower part of the specular matrix. | |||
| ```{r, fig.width=5, fig.height=4} | |||
| ggcorrplot(df, var = "Cyt", value = "Value", color = "black", tri="lower") | |||
| ``` | |||