--- title: "CitFuns" output: rmarkdown::html_vignette description: | How to use CitFuns functions. vignette: > %\VignetteIndexEntry{CitFuns Package} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE, message = F, warning = F, error = F) ``` ## Installation In order to install CitFuns package from Git reppository, you must install `devtools` package: ```{r, eval=F} install.packages('devtools') ``` In order to install it, you will have to install (if not already done) [Rtools](https://cran.r-project.org/bin/windows/Rtools/rtools40.html). You will also need [Git](https://git-scm.com/downloads) installed in your computer. Now we are ready to install CitFuns package: ```{r, eval=F} devtools::install_git("https://git.ratg.cat/marcelcosta/CitFuns.git") ``` ## Update Any time you want to update the package, you must *reinstall* it: ```{r, eval=F} detach("package:CitFuns", unload = TRUE) # Only required if you have loaded the package in this session. devtools::install_git("https://git.ratg.cat/marcelcosta/CitFuns.git") ``` ## ggheatmap **ggheatmap** generates ggplot heatmaps easily. We start by loading required packages, including *CitFuns* ```{r} library(tidyverse) library(CitFuns) ``` Now we will create an example dataframe: ```{r} df<-data.frame("pats"=paste0("PAT", 1:20), "CytA"=rnorm(20,5), "CytB"=rnorm(20,5), "CytC"=c(rnorm(5,10),rnorm(5,5),rnorm(5,10),rnorm(5,5)),"CytD"=rnorm(20,5), "CytE"=c(rnorm(5,10),rnorm(5,5),rnorm(5,10),rnorm(5,5)),"CytF"=rnorm(20,5), "CytG"=c(rnorm(5,10),rnorm(5,5),rnorm(5,10),rnorm(5,5))) df<-gather(df, Cyt, Value,-pats) head(df) ``` Usually, this package works with the dataframes in **Long** format, as it is intended in ggplot workflow. And now we will generate the heatmap. ```{r, fig.width=8} ggheatmap(df) ``` As we can observe, X and Y axis are sorted by cluster detection (using *hclust*). *ggheatmap* groups the results if more there is more than one observation for each X-Y coordinate. By default, it calculates the mean, but the median can also be used instead. To show this, we will create another variable, "Met", and we plot Cytokine expression *versus* Met status. ```{r, fig.width=8} clinics<-data.frame("pats"=df$pats %>% unique, "Met"=rep(c("0","1"), 10)) df<-merge(df, clinics) ggheatmap(df, x="Cyt",y="Met", grouping = "median") ``` By default, *other variables not used are eliminated* during the grouping process. However, if you want to further use them (for faceting, for example), you can use the *exclude_group* parameter to keep them in the data.frame. ```{r, fig.width=8} ggheatmap(df, exclude_group = "Met")+facet_grid(.~Met, scales = "free") ``` Finally, you can scale the heatmap either by rows or by columns: ```{r, fig.width=8} ggheatmap(df, scale="rows") ``` It is worth noticing that ggheatmap outputs a ggplot object, so you can further modify it as you are used to: ```{r, fig.width=8, fig.height=5} ggheatmap(df)+ scale_fill_gradient(low = "black", high = "yellow")+ scale_y_discrete(position = "right")+ theme(legend.position = "bottom") ``` ## ggcorrplot ggcorrplot generates a correlation matrix. Using the same example dataframe, you have to specify which variable and value columns will be used to test correlation. ```{r, fig.width=5, fig.height=4} ggcorrplot(df, var = "Cyt", value = "Value") ``` You can specify a color for the tile lines, transparent by default: ```{r, fig.width=5, fig.height=4} ggcorrplot(df, var = "Cyt", value = "Value", color = "white") ``` By default, ggcorrplot converts the p-value into *star* significance equivalence. You can show the pvalue or nothing ("none"). ```{r, fig.width=5, fig.height=4} ggcorrplot(df, var = "Cyt", value = "Value", color = "white", stat="pval") ``` Finally, you can show only the upper part or the lower part of the specular matrix. ```{r, fig.width=5, fig.height=4} ggcorrplot(df, var = "Cyt", value = "Value", color = "black", tri="lower") ```