ggcorrplot<-function(df, var, color="#FFFFFF00", stat="signif"){ m.df<-df %>% spread(Cyt, Value) %>% select(-pats) mcor<-cor(m.df, m.df, use="pairwise.complete.obs") # Por defecto usa el método de Pearson. mpval<-Hmisc::rcorr(as.matrix(m.df))$P df<-mcor %>% as.data.frame() %>% add_column(Var1=rownames(mcor),.before=1) %>% gather(Var2, Value, -Var1) df.pval<-mpval %>% as.data.frame() %>% add_column(Var1=rownames(mpval),.before=1) %>% gather(Var2, Value, -Var1) df.pval$Value<-round(df.pval$Value, 3) if (stat=="signif"){ df.pval$Value<-gtools::stars.pval(df.pval$Value) } order<- mcor %>% as.data.frame() %>% add_column(Var1=rownames(mcor),.before=1) %>% clustsort df$Var1<-factor(df$Var1, levels=order$x) df$Var2<-factor(df$Var2, levels=order$y) ggplot(df, aes(Var1, Var2))+ geom_tile(aes(fill=Value), color=color)+ geom_text(data=df.pval, aes(label=Value), color="white")+ scale_fill_gradientn(colors=col2(200))+ theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust=0.5), panel.background = element_blank(), axis.ticks = element_blank()) }