|
ggstats_add_xy<-function(table_stat, table, group, xcol=NULL, y="max", bracket.offset=0.05, bracket.inspace=0.05, exclude_group=NULL){
|
|
## Adapted version to fit rstatix output
|
|
value.var<-table_stat[[1,".y."]]
|
|
if (is.null(xcol)){
|
|
x<-colnames(table_stat)[1]
|
|
}else{x<-xcol}
|
|
|
|
table[,group]<-as.factor(table[,group])
|
|
table[,x]<-as.factor(table[,x])
|
|
if (is.null(exclude_group)){
|
|
table_agg<-table %>% group_by(.data[[x]])
|
|
}else{
|
|
table_agg<-table %>% group_by(.data[[x]], .data[[exclude_group]])
|
|
}
|
|
if (y == "max"){
|
|
agg<-table_agg %>% summarise(max=max(.data[[value.var]]))
|
|
}else if (y == "mean"){
|
|
agg<-table %>% group_by(.data[[x]],.data[[group]]) %>% summarise(mean=mean(.data[[value.var]])) %>% spread(group, mean)
|
|
agg<- data.frame(x=agg[,1], "max"=apply(agg[,2:ncol(agg)], 1, max, na.rm=T))
|
|
colnames(agg)[1]<-x
|
|
}else if (y == "mean+sd"){
|
|
agg<-table %>% group_by(.data[[x]],.data[[group]]) %>% summarise(mean=mean(.data[[value.var]])+sd(.[[value.var]])) %>% spread(group, mean)
|
|
agg<- data.frame(x=agg[,1], "max"=apply(agg[,2:ncol(agg)], 1, max, na.rm=T))
|
|
colnames(agg)[1]<-x
|
|
}else if (y == "mean+sem"){
|
|
agg<-table %>% group_by(.data[[x]],.data[[group]]) %>% summarise(mean=mean(.data[[value.var]])+sem(.[[value.var]])) %>% spread(group, mean)
|
|
agg<- data.frame(x=agg[,1], "max"=apply(agg[,2:ncol(agg)], 1, max, na.rm=T))
|
|
colnames(agg)[1]<-x
|
|
}
|
|
|
|
group.list<-list()
|
|
count<-1
|
|
table_stat<-mutate(table_stat, {{x}}:=as.factor(.data[[x]]))
|
|
for (i in 1:nrow(table_stat)){group.list[[count]]<-c(table_stat %>% slice(i) %>% pull(group1),table_stat%>% slice(i) %>% pull(group2)); count<-count+1}
|
|
x.index<-sapply(table_stat %>% pull(x), function(y) which(levels(table_stat %>% pull(x)) == y))
|
|
t<-tibble("y.position"=merge(table_stat, agg ,sort=F)[,"max"]+diff(range(table[value.var], na.rm = T))*bracket.offset,
|
|
"groups"=group.list,
|
|
"x.temp"=x.index,
|
|
"xmin"=(match(table_stat %>% pull(x), levels(table[,x]))+0.75*((match(table_stat$group1, levels(table[,group]))-0.5)/length(levels(table[,group]))-0.5)),
|
|
"xmax"=match(table_stat %>% pull(x), unique(table[,x]))+0.75*((match(table_stat$group2, levels(table[,group]))-0.5)/length(levels(table[,group]))-0.5)
|
|
) %>% rename("x"="x.temp")
|
|
|
|
if (!is.null(exclude_group)){
|
|
for (j in unique(pull(table_stat, all_of(exclude_group)))){
|
|
for (dia in unique(pull(table_stat,all_of(xcol)))){
|
|
if (stat.test %>% filter(p < 0.05) %>% filter(.data[[x]] == dia & .data[[exclude_group]] == j) %>% nrow() > 0){
|
|
t[table_stat[,x] == dia & table_stat[,exclude_group] == j,"y.position"]<-seq(t[table_stat[,x] == dia & table_stat[,exclude_group] == j,"y.position"][[1,1]],
|
|
t[table_stat[,x] == dia & table_stat[,exclude_group] == j,"y.position"][[1,1]]+diff(range(table[,value.var], na.rm = T))*bracket.inspace*(nrow(table_stat[table_stat[,x] == dia & table_stat[,exclude_group] == j,])-1),
|
|
by=diff(range(table[,value.var], na.rm = T))*bracket.inspace)
|
|
}
|
|
}
|
|
}
|
|
}else{
|
|
for (dia in unique(pull(table_stat,all_of(xcol)))){
|
|
t[table_stat[,x] == dia,"y.position"]<-seq(t[table_stat[,x] == dia,"y.position"][[1,1]],
|
|
t[table_stat[,x] == dia,"y.position"][[1,1]]+diff(range(table[,value.var], na.rm = T))*bracket.inspace*(nrow(table_stat[table_stat[,x] == dia,])-1),
|
|
by=diff(range(table[,value.var], na.rm = T))*bracket.inspace)
|
|
}
|
|
}
|
|
|
|
return(cbind(table_stat,t) %>% as_tibble)
|
|
}
|