|
ggcorrplot<-function(df, var, color="#FFFFFF00", stat="signif"){
|
|
m.df<-df %>% spread(Cyt, Value) %>% select(-pats)
|
|
mcor<-cor(m.df, m.df, use="pairwise.complete.obs") # Por defecto usa el método de Pearson.
|
|
mpval<-Hmisc::rcorr(as.matrix(m.df))$P
|
|
|
|
df<-mcor %>% as.data.frame() %>% add_column(Var1=rownames(mcor),.before=1) %>%
|
|
gather(Var2, Value, -Var1)
|
|
df.pval<-mpval %>% as.data.frame() %>% add_column(Var1=rownames(mpval),.before=1) %>%
|
|
gather(Var2, Value, -Var1)
|
|
|
|
if (stat=="signif"){
|
|
df.pval$Value<-gtools::stars.pval(as.numeric(df.pval$Value))
|
|
}
|
|
|
|
order<- mcor %>% as.data.frame() %>% add_column(Var1=rownames(mcor),.before=1) %>% clustsort
|
|
|
|
ggplot(df, aes(Var1, Var2, fill=Value))+
|
|
scale_x_discrete(limits=order$x)+
|
|
scale_y_discrete(limits=order$y)+
|
|
theme_heatmap(line.color=color)+
|
|
geom_text(data=df.pval, aes(label=round(Value, 2)))
|
|
}
|