|
@ -0,0 +1,142 @@ |
|
|
|
|
|
library(tidyverse) |
|
|
|
|
|
library(openxlsx) |
|
|
|
|
|
library(ggpubr) |
|
|
|
|
|
|
|
|
|
|
|
path="C:/Users/47926492N/OneDrive - IDIBELL - Institut d'Investigació Biomèdica de Bellvitge/ImmunoPreserve/TestIP/" |
|
|
|
|
|
data<-read.xlsx(paste0(path, "Panel1.xlsx"), sheet = "IC") |
|
|
|
|
|
|
|
|
|
|
|
data1<-data %>% gather(phen, value, -sample, -Population) |
|
|
|
|
|
data1["TimePoint"]<-sapply(data1$sample, function(x) strsplit(x, "_")[[1]][2]) |
|
|
|
|
|
data1["sample"]<-sapply(data1$sample, function(x) strsplit(x, "_")[[1]][1]) |
|
|
|
|
|
data1<-data1 %>% group_by(Population, TimePoint, phen) %>% summarise(value=mean(value)) |
|
|
|
|
|
|
|
|
|
|
|
data1$phen<-gsub("p","+",data1$phen) |
|
|
|
|
|
data1$phen<-gsub("n","-",data1$phen) |
|
|
|
|
|
data1$phen<-gsub("_"," ",data1$phen) |
|
|
|
|
|
|
|
|
|
|
|
data1$phen<-gsub("n","-",data1$phen, fixed = T) |
|
|
|
|
|
data1$phen<-gsub("p","+",data1$phen, fixed = T) |
|
|
|
|
|
data1$phen<-gsub("_"," ",data1$phen) |
|
|
|
|
|
data1[data1$value < 1, "phen"]<-"Other" |
|
|
|
|
|
data1$phen<-gsub("[A-Z]*-*[0-9T]- *", "", data1$phen) |
|
|
|
|
|
data1$phen<-gsub("+ $", "", data1$phen) |
|
|
|
|
|
data1$phen[data1$phen == ""]<-"All Negative" |
|
|
|
|
|
|
|
|
|
|
|
data1["phen1"]<-"PD1" |
|
|
|
|
|
data1[!grepl("PD1+", data1$phen),"phen1"]<-NA |
|
|
|
|
|
|
|
|
|
|
|
data1["phen2"]<-"TIM3" |
|
|
|
|
|
data1[!grepl("TIM3+", data1$phen),"phen2"]<-NA |
|
|
|
|
|
|
|
|
|
|
|
data1["phen3"]<-"CTLA4" |
|
|
|
|
|
data1[!grepl("CTLA4+", data1$phen),"phen3"]<-NA |
|
|
|
|
|
|
|
|
|
|
|
data1["phen4"]<-"LAG3" |
|
|
|
|
|
data1[!grepl("LAG3+", data1$phen),"phen4"]<-NA |
|
|
|
|
|
|
|
|
|
|
|
data1<-data1 %>% arrange(desc(value)) |
|
|
|
|
|
data2<-data1 %>% filter(!phen %in% c("All Negative","Other")) |
|
|
|
|
|
data1<-rbind(data2, data1 %>% filter(phen %in% c("All Negative","Other")) %>% arrange(desc(phen))) |
|
|
|
|
|
|
|
|
|
|
|
data1.list<-list() |
|
|
|
|
|
cont<-1 |
|
|
|
|
|
for (i in data1$Population %>% unique){ |
|
|
|
|
|
for (j in data1$TimePoint %>% unique){ |
|
|
|
|
|
data_temp<-data1 %>% filter(Population == i & TimePoint == j) |
|
|
|
|
|
data_temp$ymax<-cumsum(data_temp$value) |
|
|
|
|
|
data_temp$ymin<-c(0, head(data_temp$ymax, n=-1)) |
|
|
|
|
|
data1.list[[cont]]<-data_temp |
|
|
|
|
|
cont<-cont+1 |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
data1<-do.call(rbind, data1.list) |
|
|
|
|
|
|
|
|
|
|
|
data1<-data1 %>% filter(TimePoint %in% c("W1","W2","W8","W12")) |
|
|
|
|
|
|
|
|
|
|
|
data1$TimePoint<-factor(data1$TimePoint, levels=c("W1","W2","W8","W12")) |
|
|
|
|
|
data1$Population<-factor(data1$Population, levels=c("CD8","CD4")) |
|
|
|
|
|
|
|
|
|
|
|
color<-c(c("CTLA4+ LAG3+ PD1+ TIM3+"="black","All Negative"="grey90","Other"="grey50", "PD1+"="#C07AFF", "CTLA4+"="#3EB3DE","TIM3+"="#5EF551","LAG3+"="#DEBB3E"), |
|
|
|
|
|
c("CTLA4+ PD1+"="#6666FF","PD1+ TIM3+"="#849CA8", "LAG3+ PD1+"="#C47F9F", "CTLA4+ TIM3+"="#4ED498", "CTLA4+ LAG3+"="#8EB78E", "LAG3+ TIM3+"="#9ED848"), |
|
|
|
|
|
c("CTLA4+ PD1+ TIM3+"="#B81515", "LAG3+ PD1+ TIM3+"="#0f5860")) |
|
|
|
|
|
|
|
|
|
|
|
basic.color<-color[c("PD1+","TIM3+","CTLA4+","LAG3+")] |
|
|
|
|
|
names(basic.color)<-c("PD1","TIM3","CTLA4","LAG3") |
|
|
|
|
|
# Make the plot |
|
|
|
|
|
g_coex<-ggplot(data1)+ |
|
|
|
|
|
facet_grid(Population~TimePoint)+ |
|
|
|
|
|
geom_rect(aes(ymax=ymax, ymin=ymin, xmax=4.5, xmin=0), fill=color[data1$phen])+ |
|
|
|
|
|
geom_rect(aes(ymax=ymax, ymin=ymin, xmax=5.4, xmin=5, fill=factor(phen1, levels=c("PD1","TIM3","CTLA4","LAG3"))))+ |
|
|
|
|
|
geom_rect(aes(ymax=ymax, ymin=ymin, xmax=5.9, xmin=5.5, fill=factor(phen2, levels=c("PD1","TIM3","CTLA4","LAG3"))))+ |
|
|
|
|
|
geom_rect(aes(ymax=ymax, ymin=ymin, xmax=6.4, xmin=6, fill=factor(phen3, levels=c("PD1","TIM3","CTLA4","LAG3"))))+ |
|
|
|
|
|
geom_rect(aes(ymax=ymax, ymin=ymin, xmax=6.9, xmin=6.5, fill=factor(phen4, levels=c("PD1","TIM3","CTLA4","LAG3"))))+ |
|
|
|
|
|
scale_fill_manual(values = basic.color, na.value="#FFFFFF00", drop=F, limits=c("PD1","TIM3","CTLA4","LAG3"), name="IC")+ |
|
|
|
|
|
coord_polar(theta="y") + # Try to remove that to understand how the chart is built initially |
|
|
|
|
|
xlim(c(0, 7))+ # Try to remove that to see how to make a pie chart |
|
|
|
|
|
theme_classic()+ |
|
|
|
|
|
guides(fill="none")+ |
|
|
|
|
|
theme(strip.background = element_blank(), |
|
|
|
|
|
strip.text = element_text(size=12, face="bold"), |
|
|
|
|
|
axis.line = element_blank(), |
|
|
|
|
|
axis.ticks = element_blank(), |
|
|
|
|
|
# plot.margin = margin(-200,0,0,0), |
|
|
|
|
|
axis.text = element_blank()) |
|
|
|
|
|
|
|
|
|
|
|
mtl_rec<-as.data.frame(matrix(nrow=0, ncol=3)) |
|
|
|
|
|
colnames(mtl_rec)<-c(colnames(data1)[1:2],"phen") |
|
|
|
|
|
for (rec in c("PD1+", "TIM3+", "LAG3+","TIGIT+", "CTLA4+")){ |
|
|
|
|
|
temp<-data1[grep(rec, data1$phen),] |
|
|
|
|
|
if (nrow(temp) > 0){ |
|
|
|
|
|
mtl_rec<-rbind(mtl_rec, data.frame(temp, "Rec"=rec)) |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
mtl_rec_sum<-mtl_rec %>% group_by(TimePoint,Population,Rec, phen) %>% summarise(value=sum(value)) |
|
|
|
|
|
|
|
|
|
|
|
ggplot(mtl_rec_sum, aes(Rec, value, fill=phen))+ |
|
|
|
|
|
facet_grid(Population~TimePoint)+ |
|
|
|
|
|
geom_bar(stat="identity", color="black")+ |
|
|
|
|
|
scale_fill_manual(values = color, name="IC") |
|
|
|
|
|
|
|
|
|
|
|
data2<-data %>% gather(phen, value, -sample, -Population) |
|
|
|
|
|
data2["TimePoint"]<-sapply(data2$sample, function(x) strsplit(x, "_")[[1]][2]) |
|
|
|
|
|
data2["sample"]<-sapply(data2$sample, function(x) strsplit(x, "_")[[1]][1]) |
|
|
|
|
|
|
|
|
|
|
|
data2$phen<-gsub("n","-",data2$phen, fixed = T) |
|
|
|
|
|
data2$phen<-gsub("p","+",data2$phen, fixed = T) |
|
|
|
|
|
data2$phen<-gsub("_"," ",data2$phen) |
|
|
|
|
|
# data2[data2$value < 1, "phen"]<-"Other" |
|
|
|
|
|
data2$phen<-gsub("[A-Z]*-*[0-9T]- *", "", data2$phen) |
|
|
|
|
|
data2$phen<-gsub("+ $", "", data2$phen) |
|
|
|
|
|
data2$phen[data2$phen == ""]<-"All Negative" |
|
|
|
|
|
|
|
|
|
|
|
data2<-data2 %>% filter(TimePoint %in% c("W1","W2","W8","W12")) |
|
|
|
|
|
|
|
|
|
|
|
mtl_rec2<-as.data.frame(matrix(nrow=0, ncol=3)) |
|
|
|
|
|
colnames(mtl_rec2)<-c(colnames(data2)[1:2],"phen") |
|
|
|
|
|
for (rec in c("PD1", "TIM3", "LAG3","CTLA4")){ |
|
|
|
|
|
temp<-data2[grep(rec, data2$phen),] |
|
|
|
|
|
if (nrow(temp) > 0){ |
|
|
|
|
|
mtl_rec2<-rbind(mtl_rec2, data.frame(temp, "Rec"=rec)) |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
mtl_rec2<-mtl_rec2 %>% group_by(sample,Population,TimePoint,Rec) %>% summarise(value=sum(value, na.rm=T)) |
|
|
|
|
|
|
|
|
|
|
|
mtl_rec2$Rec<-factor(mtl_rec2$Rec, levels=c("PD1", "TIM3", "CTLA4","LAG3")) |
|
|
|
|
|
mtl_rec2$TimePoint<-factor(mtl_rec2$TimePoint, levels=c("W1","W2","W8","W12")) |
|
|
|
|
|
mtl_rec2$Population<-factor(mtl_rec2$Population, levels=c("CD8","CD4")) |
|
|
|
|
|
|
|
|
|
|
|
g_Rec<-ggplot(mtl_rec2, aes(TimePoint, value))+ |
|
|
|
|
|
facet_grid(Population~Rec)+ |
|
|
|
|
|
geom_point(color="grey80")+ |
|
|
|
|
|
geom_line(aes(group=sample), color="grey80")+ |
|
|
|
|
|
geom_point(stat="summary", aes(color=Rec), size=2)+ |
|
|
|
|
|
geom_line(aes(group=Rec, color=Rec), stat="summary", size=1)+ |
|
|
|
|
|
scale_color_manual(values = basic.color, name="IC")+ |
|
|
|
|
|
labs(y="% CD8/CD4 T cells")+ |
|
|
|
|
|
guides(color="none")+ |
|
|
|
|
|
theme_bw() |
|
|
|
|
|
|
|
|
|
|
|
ggarrange(g_Rec, g_coex, ncol = 1) |
|
|
|
|
|
ggsave(paste0(path,"Analysis/IC_coex.png"), width = 7.5, height = 7.5) |