--- title: "CytoR" author: "Marcel Costa-Garcia" date: "`r Sys.Date()`" output: html_document --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE, warning=FALSE, message=FALSE) ``` First we load the required libreries and import functions from `functionsCyto.R`: ```{r} library(tidyverse) library(flowWorkspace) library(Biobase) library(flowGate) source("functionsCyto.R") ``` We import the .LMD or .fcs files to a FlowSet object that we convert into a GatingSet (in the case of LMD files, they include both the format FCS2 and FCS3, which is accessed as dataset=2): ```{r} fs<-read.ncdfFlowSet(files=list.files("BcellPhenotype-Files/",".LMD", full.names = T), readonly = F, dataset=2) gs <- GatingSet(fs) gs ``` Next, we will compensate with the compensation matrix of the adquisition, which is embed into the file. We can import another compensation matrix: ```{r} comp<-spillover(fs[[1]])$`$SPILLOVER` colnames(comp)<-colnames(gs)[5:14] rownames(comp)<-colnames(gs)[5:14] comp gs<-compensate(gs, comp) ``` To transform the axis in an interactive and visual way, I have created the following function: ```{r, eval=FALSE} trans_params<-transform_gs(gs) ``` ![](trans_params.jpg) ```{r, include=F} trans_params<-readRDS("BcellPhenotype-trans_params.rds") trans_apply(gs, trans_params = trans_params) ``` ```{r} trans_params$`FL3-A` ``` We can save the transformation params in a file and latter we can import and apply directly (including in other experiments): ```{r, eval=F} saveRDS(trans_params, "BcellPhenotype-trans_params.rds") ``` ```{r, eval=F} trans_params<-readRDS("BcellPhenotype-trans_params.rds") trans_apply(gs, trans_params = trans_params) ``` As it wasn't done during the acquisition, we will define the marker name for the channels of interest: ```{r} markers<-colnames(gs) markers[c(7,13)]<-c("CD19","L&D") names(markers)<-colnames(gs) markernames(gs)<-markers markernames(gs) ``` Finally, we will clean a bit the sample names: ```{r} sampleNames(gs) sampleNames(gs)<-gsub("\\s[0-9]*.LMD","",sampleNames(gs)) sampleNames(gs)<-gsub(".*\\s","",sampleNames(gs)) pData(gs)$name<-rownames(pData(gs)) sampleNames(gs) ``` And we are ready to gate! We will be using the `gs_interactive_gate` function from `flowGate` package. ```{r, include=F} gates<-readRDS("BcellPhenotype-gates.rds") gs<-gates_apply(gs, gates) ``` ```{r, eval=F} gs_gate_interactive(gs, filterId = "Leukocytes", dims = list("FS-A", "SS-A")) ``` ![](Gates.jpg) ```{r, eval=F} gs_gate_interactive(gs, subset = "Leukocytes", filterId = "CD19 L&D", dims = list("CD19", "L&D")) ``` We can save the created gates into a file to import latter on (which may be also used to apply the gating strategy into a new experiment): ```{r, eval=F} gates<-gates_save(gs, file = "BcellPhenotype-gates.rds") gates<-readRDS("BcellPhenotype-gates.rds") gs<-gates_apply(gs, gates) ``` ```{r} plot(gs) ``` We can rapidly explore the results using the `autoplot` function: ```{r} autoplot(gs, "Leukocytes", bins=128, nrow=1) autoplot(gs[["aCDE19"]], bins=128, nrow=1) ``` We can further personalize the plot with similar sintaxis as `ggplot` with the `ggcyto` package: ```{r} g<-ggcyto(gs, subset = "Leukocytes", bins=128, aes(CD19,`L&D`))+ facet_grid(.~factor(name, levels=c("Unst","aCDE19")))+ geom_hex(bins=128)+ geom_gate()+ geom_stats()+ scale_fill_gradient(low="black", high="violet") g ``` Finally, we can export the stats and plot them: ```{r, fig.width=4} stats<-gs_pop_get_stats(gs, nodes=gs_get_pop_paths(gs, path = "auto")[3:6], type="perc") stats g2<-ggplot(stats, aes(factor(sample, levels=c("Unst","aCDE19")), percent, fill=pop))+ geom_bar(stat="identity", color="black")+xlab("Samples") ggpubr::ggarrange(as.ggplot(g), g2, ncol=1) ``` Code: ```r library(tidyverse) library(flowWorkspace) library(Biobase) library(flowGate) source("functionsCyto.R") fs<-read.ncdfFlowSet(files=list.files("BcellPhenotype-Files/",".LMD", full.names = T), readonly = F, dataset=2) gs <- GatingSet(fs) comp<-spillover(fs[[1]])$`$SPILLOVER` colnames(comp)<-colnames(gs)[5:14] rownames(comp)<-colnames(gs)[5:14] gs<-compensate(gs, comp) trans_params<-transform_gs(gs) markers<-colnames(gs) markers[c(7,13)]<-c("CD19","L&D") names(markers)<-colnames(gs) markernames(gs)<-markers sampleNames(gs)<-gsub("\\s[0-9]*.LMD","",sampleNames(gs)) sampleNames(gs)<-gsub(".*\\s","",sampleNames(gs)) pData(gs)$name<-rownames(pData(gs)) gs_gate_interactive(gs, filterId = "Leukocytes", dims = list("FS-A", "SS-A")) gs_gate_interactive(gs, subset = "Leukocytes", filterId = "CD19 L&D", dims = list("CD19", "L&D")) g<-ggcyto(gs, subset = "Leukocytes", bins=128, aes(CD19,`L&D`))+ facet_grid(.~factor(name, levels=c("Unst","aCDE19")))+ geom_hex(bins=128)+ geom_gate()+ geom_stats()+ scale_fill_gradient(low="black", high="violet") stats<-gs_pop_get_stats(gs, nodes=gs_get_pop_paths(gs, path = "auto")[3:6], type="perc") stats g2<-ggplot(stats, aes(factor(sample, levels=c("Unst","aCDE19")), percent, fill=pop))+ geom_bar(stat="identity", color="black")+xlab("Samples") ggpubr::ggarrange(as.ggplot(g), g2, ncol=1) ```