@ -0,0 +1,169 @@ | |||
library(shiny) | |||
library(openxlsx) | |||
library(readxl) | |||
library(ggplot2) | |||
library(reshape2) | |||
library(dplyr) | |||
library(ggbeeswarm) | |||
library(magrittr) | |||
library(flextable) | |||
source("funcions.R") | |||
ui <- fluidPage( | |||
# Application title | |||
titlePanel("ELISPOTs"), | |||
sidebarLayout( | |||
sidebarPanel( | |||
fileInput(inputId = "file1", label = "Dades", multiple = F), | |||
selectInput(inputId = "test", "Test Estadístic", selected = "Ttest", choices = c("T-test (adj Holm)","Wilcoxon (adj Holm)")), | |||
sliderInput(inputId = "umbral_pos", "Mínimo para positivo:", min = 0, max=100, step = 5, value = 10), | |||
checkboxInput(inputId = "positive", label = "Mostrar positivitat", value = F), | |||
checkboxInput(inputId = "showstats", label = "Mostrar estadística", value = F), | |||
downloadButton("downloadData", "Descarregar Informe") | |||
), | |||
mainPanel( | |||
plotOutput("distPlot"), | |||
uiOutput("flexstats") | |||
) | |||
) | |||
) | |||
# Define server logic required to draw a histogram | |||
server <- function(input, output) { | |||
dades<-reactiveValues() | |||
dades$taula<-NULL | |||
dades$stats<-NULL | |||
observe({ | |||
if (!is.null(input$file1)){ | |||
dades$taula<-read_xlsx(input$file1$datapath) | |||
} | |||
}) | |||
output$distPlot <- renderPlot({ | |||
observeEvent(dades$taula, {}) | |||
if (!is.null(dades$taula)){ | |||
ctrl<-"Ctrl+" | |||
mock<-"Mock" | |||
table<-dades$taula[,colnames(dades$taula) != "Groups"] | |||
t_mean<-dcast(melt(table, id="Mice"),Mice~variable, mean, na.rm=T) | |||
t_substr<-data.frame("Mice"=t_mean[,1], | |||
as.data.frame(t(apply(t_mean[,2:ncol(table)], 1, function(x) x-x[mock]))) | |||
) | |||
t_mean_group<-merge(t_mean, unique(dades$taula[c("Mice","Groups")]), id="Mice") | |||
mock_mean<-dcast(t_mean_group, Groups~., value.var=mock, mean) | |||
mock_mean[,2]<-mock_mean[,2]*2 | |||
mock_mean[mock_mean$. < input$umbral_pos,2]<-input$umbral_pos | |||
t_substr<-merge(t_substr, unique(dades$taula[c("Mice","Groups")]), id="Mice") | |||
t_substr<-t_substr[,c(1, ncol(t_substr), 2:(ncol(t_substr)-1))] | |||
t_substr<-t_substr[,c("Mice", "Groups", colnames(t_substr)[!colnames(t_substr) %in% c("Mice", "Groups")])] | |||
t_substr[,3:ncol(t_substr)]<-apply(t_substr[,3:ncol(t_substr)],2, function(x) replace(x, which(x < 0),0)) | |||
colnames(t_substr)<-c("Mice", "Groups", colnames(t_mean)[2:ncol(t_mean)]) | |||
t_substr_gp<-t_substr | |||
t_substr_gp[3:ncol(t_substr)]<-apply(t_substr[3:ncol(t_substr)], 2, function(x) gsub(".",",",x, fixed=T)) | |||
t_substr_gp<-t_substr_gp[order(factor(t_substr_gp$Mice, levels = unique(table$Mice))),] | |||
doc<-t(t_substr_gp) | |||
write.xlsx(doc, "data4graphpad.xlsx",rowNames=T) | |||
t<-melt(t_substr[,!colnames(t_substr) %in% c(ctrl, mock)]) | |||
if (input$test == "T-test (adj Holm)"){ | |||
t_stats<-multi_stats(t, "value", "variable", "Groups", stat.test = "ttest") | |||
} | |||
if (input$test == "Wilcoxon (adj Holm)"){ | |||
t_stats<-multi_stats(t, "value", "variable", "Groups", stat.test = "wilcox") | |||
} | |||
dades$stats<<-t_stats | |||
t_stats<-t_stats %>% filter(p.signif != "ns") | |||
t_maps<-generate_labstats(t_stats, t, "value", "variable", "Groups") | |||
if (input$showstats == F){ | |||
t_stats<-as.data.frame(matrix(nrow=0, ncol=6)) | |||
colnames(t_stats)<-c("variable", "group1", "group2", "p.adj", "p.signif", "Method") | |||
t_maps<-list() | |||
t_maps[["label"]]<-as.data.frame(matrix(nrow = 0, ncol=2)) | |||
colnames(t_maps$label)<-c("x", "y") | |||
t_maps[["brackets"]]<-as.data.frame(matrix(nrow = 0, ncol=4)) | |||
colnames(t_maps$brackets)<-c("y1", "y2", "x1", "x2") | |||
} | |||
set.seed(123) | |||
if (input$positive == T){ | |||
ggplot(melt(t_substr, id=c("Mice", ctrl, "Groups")), aes(variable, value))+ | |||
labs(x="", y="Spots/2.5*10^5 cells")+ | |||
# geom_errorbar(stat="summary", position=position_dodge(width=0.9), width=0.5, aes(fill=Groups))+ | |||
geom_hline(data=mock_mean, aes(color=Groups, yintercept = `.`))+ | |||
# geom_bar(stat="summary", position="dodge", color="black", aes(fill=Groups))+ | |||
geom_boxplot(color="black", aes(fill=Groups), alpha=0.4, outlier.alpha = 0)+ | |||
geom_jitter(position=position_jitterdodge(jitter.width = 0.2), shape=21, aes(fill=Groups), size=3)+ | |||
# geom_quasirandom(position = position_quasirandom(), shape=21)+ | |||
scale_x_discrete(limits=colnames(t_substr)[!colnames(t_substr) %in% c("Mice", "Groups", ctrl, mock)])+ | |||
geom_segment(data=t_maps$brackets, aes(x=x1, xend=x2, y=y1, yend=y2), color="black")+ | |||
geom_text(data=t_stats, aes(t_maps$label$x, t_maps$label$y, label=p.signif), color="black")+ | |||
theme_bw()+ | |||
theme(axis.text.x=element_text(angle=45, hjust=1)) | |||
}else{ | |||
ggplot(melt(t_substr, id=c("Mice", ctrl, "Groups")), aes(variable, value))+ | |||
labs(x="", y="Spots/2.5*10^5 cells")+ | |||
# geom_errorbar(stat="summary", position=position_dodge(width=0.9), width=0.5, aes(fill=Groups))+ | |||
# geom_bar(stat="summary", position="dodge", color="black", aes(fill=Groups))+ | |||
geom_boxplot(color="black", aes(fill=Groups), alpha=0.4, outlier.alpha = 0)+ | |||
geom_jitter(position=position_jitterdodge(jitter.width = 0.2), shape=21, aes(fill=Groups), size=3)+ | |||
# geom_quasirandom(width=0.2, position=position_dodge(), shape=21)+ | |||
scale_x_discrete(limits=colnames(t_substr)[!colnames(t_substr) %in% c("Mice", "Groups", ctrl, mock)])+ | |||
geom_segment(data=t_maps$brackets, aes(x=x1, xend=x2, y=y1, yend=y2), color="black")+ | |||
geom_text(data=t_stats, aes(t_maps$label$x, t_maps$label$y, label=p.signif), color="black")+ | |||
theme_bw()+ | |||
theme(axis.text.x=element_text(angle=45, hjust=1)) | |||
} | |||
} | |||
}) | |||
output$flexstats <- renderUI({ | |||
observeEvent(dades$stats, {}) | |||
t_stats<-dades$stats | |||
if (!is.null(dades$stats)){ | |||
return( | |||
t_stats %>% | |||
flextable() %>% | |||
theme_vanilla() %>% | |||
fontsize(size=14, part="all") %>% | |||
padding(padding=10, part="all") %>% | |||
color(~ p.adj < 0.05, color = "red")%>% | |||
autofit() | |||
) %>% | |||
htmltools_value() | |||
} | |||
}) | |||
output$downloadData <- downloadHandler( | |||
filename = function() { | |||
paste("elispot", ".zip", sep="") | |||
}, | |||
content = function(file){ | |||
print(file) | |||
# tempReport <- file.path(tempdir(), "elispots.Rmd") | |||
# file.copy("elispots.Rmd", tempReport, overwrite = TRUE) | |||
params=list(file=input$file1$datapath, positive=input$positive, showstats=input$showstats, test=input$test, umbral_pos=input$umbral_pos) | |||
rmarkdown::render("elispots.Rmd", output_file="Results_elispot.html", params=params, envir = new.env(parent = globalenv())) | |||
zip(file, | |||
c("Results_elispot.html","data4graphpad.xlsx") | |||
) | |||
}, | |||
contentType="application/zip" | |||
) | |||
} | |||
# Run the application | |||
shinyApp(ui = ui, server = server) |
@ -0,0 +1,95 @@ | |||
--- | |||
title: "Elispots" | |||
output: html_document | |||
params: | |||
file: "../Elispot-validation-spots.xlsx" | |||
positive: F | |||
showstats: F | |||
test: "Ttest" | |||
umbral_pos: 10 | |||
--- | |||
```{r, echo=F, warning=F, message=F} | |||
dades<-read_xlsx(params$file) | |||
ctrl<-"Ctrl+" | |||
mock<-"Mock" | |||
table<-dades[,colnames(dades) != "Groups"] | |||
t_mean<-dcast(melt(table, id="Mice"),Mice~variable, mean, na.rm=T) | |||
t_substr<-data.frame("Mice"=t_mean[,1], | |||
as.data.frame(t(apply(t_mean[,2:ncol(table)], 1, function(x) x-x[mock]))) | |||
) | |||
t_mean_group<-merge(t_mean, unique(dades[c("Mice","Groups")]), id="Mice") | |||
mock_mean<-dcast(t_mean_group, Groups~., value.var=mock, mean) | |||
mock_mean[,2]<-mock_mean[,2]*2 | |||
mock_mean[mock_mean$. < params$umbral_pos,2]<-params$umbral_pos | |||
t_substr<-merge(t_substr, unique(dades[c("Mice","Groups")]), id="Mice") | |||
t_substr<-t_substr[,c(1, ncol(t_substr), 2:(ncol(t_substr)-1))] | |||
t_substr<-t_substr[,c("Mice", "Groups", colnames(t_substr)[!colnames(t_substr) %in% c("Mice", "Groups")])] | |||
t_substr[,3:ncol(t_substr)]<-apply(t_substr[,3:ncol(t_substr)],2, function(x) replace(x, which(x < 0),0)) | |||
colnames(t_substr)<-c("Mice", "Groups", colnames(t_mean)[2:ncol(t_mean)]) | |||
t<-melt(t_substr[,!colnames(t_substr) %in% c(ctrl, mock)]) | |||
if (params$test == "T-test (adj Holm)"){ | |||
t_stats<-multi_stats(t, "value", "variable", "Groups", stat.test = "ttest") | |||
} | |||
if (params$test == "Wilcoxon (adj Holm)"){ | |||
t_stats<-multi_stats(t, "value", "variable", "Groups", stat.test = "wilcox") | |||
} | |||
t_stats<-t_stats %>% filter(p.signif != "ns") | |||
t_maps<-generate_labstats(t_stats, t, "value", "variable", "Groups") | |||
if (params$showstats == F){ | |||
t_stats<-as.data.frame(matrix(nrow=0, ncol=6)) | |||
colnames(t_stats)<-c("variable", "group1", "group2", "p.adj", "p.signif", "Method") | |||
t_maps<-list() | |||
t_maps[["label"]]<-as.data.frame(matrix(nrow = 0, ncol=2)) | |||
colnames(t_maps$label)<-c("x", "y") | |||
t_maps[["brackets"]]<-as.data.frame(matrix(nrow = 0, ncol=4)) | |||
colnames(t_maps$brackets)<-c("y1", "y2", "x1", "x2") | |||
} | |||
set.seed(123) | |||
if (params$positive == T){ | |||
ggplot(melt(t_substr, id=c("Mice", ctrl, "Groups")), aes(variable, value))+ | |||
labs(x="", y="Spots/2.5*10^5 cells")+ | |||
geom_errorbar(stat="summary", position=position_dodge(width=0.9), width=0.5, aes(fill=Groups))+ | |||
geom_hline(data=mock_mean, aes(color=Groups, yintercept = `.`))+ | |||
geom_bar(stat="summary", position="dodge", color="black", aes(fill=Groups))+ | |||
geom_jitter(position=position_jitterdodge(jitter.width = 0.2), shape=21, aes(fill=Groups))+ | |||
# geom_quasirandom(position = position_quasirandom(), shape=21)+ | |||
scale_x_discrete(limits=colnames(t_substr)[!colnames(t_substr) %in% c("Mice", "Groups", ctrl, mock)])+ | |||
geom_segment(data=t_maps$brackets, aes(x=x1, xend=x2, y=y1, yend=y2), color="black")+ | |||
geom_text(data=t_stats, aes(t_maps$label$x, t_maps$label$y, label=p.signif), color="black")+ | |||
theme_bw()+ | |||
theme(axis.text.x=element_text(angle=45, hjust=1)) | |||
}else{ | |||
ggplot(melt(t_substr, id=c("Mice", ctrl, "Groups")), aes(variable, value))+ | |||
labs(x="", y="Spots/2.5*10^5 cells")+ | |||
geom_errorbar(stat="summary", position=position_dodge(width=0.9), width=0.5, aes(fill=Groups))+ | |||
geom_bar(stat="summary", position="dodge", color="black", aes(fill=Groups))+ | |||
geom_jitter(position=position_jitterdodge(jitter.width = 0.2), shape=21, aes(fill=Groups))+ | |||
# geom_quasirandom(width=0.2, position=position_dodge(), shape=21)+ | |||
scale_x_discrete(limits=colnames(t_substr)[!colnames(t_substr) %in% c("Mice", "Groups", ctrl, mock)])+ | |||
geom_segment(data=t_maps$brackets, aes(x=x1, xend=x2, y=y1, yend=y2), color="black")+ | |||
geom_text(data=t_stats, aes(t_maps$label$x, t_maps$label$y, label=p.signif), color="black")+ | |||
theme_bw()+ | |||
theme(axis.text.x=element_text(angle=45, hjust=1)) | |||
} | |||
``` | |||
```{r, echo=F, warning=F, message=F} | |||
t_stats %>% | |||
flextable() %>% | |||
theme_vanilla() %>% | |||
fontsize(size=14, part="all") %>% | |||
padding(padding=10, part="all") %>% | |||
color(~ p.adj < 0.05, color = "red")%>% | |||
autofit() | |||
``` | |||
@ -0,0 +1,137 @@ | |||
library(dplyr) | |||
library(dunn.test) | |||
library(tibble) | |||
library(reshape2) | |||
library(ggplot2) | |||
corr_multi<-function(table, genes1, genes2, font_size=5, ruta="./", exportar=F) | |||
{ | |||
cor.list<-list() | |||
cont<-1 | |||
for (gene1 in genes1){ | |||
for (gene2 in genes2){ | |||
print(gene1) | |||
print(gene2) | |||
cor_temp<-cor.test(table[,gene1], table[,gene2]) | |||
if (!is.na(cor_temp$p.value)){ | |||
pval_plot<-paste("cor =",format(cor_temp$estimate, digits=2),if(cor_temp$p.value < 2.2e-16){" , p < 2.2e-16"}else{paste(", p=",format(cor_temp$p.value,digits=3))}) | |||
} | |||
cor.list[[cont]]<-ggplotGrob(ggplot(data=table, aes(x=table[,gene1], y=table[,gene2]))+ | |||
geom_point()+ | |||
geom_smooth(method="lm")+ | |||
geom_text(aes(x=min(table[,gene1], na.rm=T), y=(max(table[,gene2],na.rm = T)+max(table[,gene2],na.rm = T)*0.2), label=pval_plot), hjust="inward", family="serif", size=font_size)+ | |||
labs(x=gene1, y=gene2)+ | |||
theme_bw()) | |||
if (exportar == T){ | |||
png(paste0(ruta,gene1,"vs",gene2,".png"), res=900, width=3000, height=3000) | |||
plot(cor.list[[cont]]) | |||
dev.off() | |||
} | |||
cont<-cont+1 | |||
} | |||
} | |||
return(cor.list) | |||
} | |||
multi_stats<-function(table, value.var, x, group, stat.test, adjust="default", paired=F){ | |||
## Requires dplyr and tibble packets | |||
defaults=c("dunn"="none", "ttest"="holm", "wilcox"="holm") | |||
funs<-c("ttest"="pairwise.t.test", "wilcox"="pairwise.wilcox.test") | |||
if (adjust == "default"){adjust=defaults[stat.test]} | |||
stat.def<-as.data.frame(matrix(nrow=0, ncol=5)) | |||
colnames(stat.def)<-c(x, "group1", "group2", "p.adj", "p.signif") | |||
for (point in unique(table[,x])){ | |||
condition<-all(table %>% filter(table[,x] == point) %>% pull(value.var) == 0) == F | |||
len_group<-length(unique(table %>% filter(table[,x] == point) %>% pull(group))) | |||
if (condition == T & !is.na(condition) & len_group > 1){ | |||
if(stat.test == "dunn"){ | |||
test<-dunn.test(table %>% filter(table[,x] == point) %>% pull(value.var), table %>% filter(table[,x] == point) %>% pull(group), method=adjust) | |||
comp<-strsplit(test$comparisons, " - ") | |||
stat.temp<-data.frame(matrix(unlist(comp), nrow=length(comp), byrow=T), "p.adj"=test$P.adjusted, stringsAsFactors = F, check.names = F) | |||
colnames(stat.temp)[1:2]<-c("group1", "group2") | |||
}else if (stat.test %in% names(funs)){ | |||
test<-get(funs[stat.test])(table %>% filter(table[,x] == point) %>% pull(value.var), table %>% filter(table[,x] == point) %>% pull(group), method=adjust, paired=paired)$p.value | |||
stat.temp<-melt(test) | |||
colnames(stat.temp)<-c("group1", "group2","p.adj") | |||
} | |||
stat.temp["p.signif"]<-case_when( | |||
stat.temp$p.adj >= 0.05 ~ "ns", | |||
stat.temp$p.adj < 0.0001 ~ "****", | |||
stat.temp$p.adj < 0.001 ~ "***", | |||
stat.temp$p.adj < 0.01 ~ "**", | |||
stat.temp$p.adj < 0.05 ~ "*" | |||
) | |||
stat.temp<-stat.temp %>% add_column(x=point, .before=T) | |||
colnames(stat.temp)[1]<-x | |||
stat.def<-rbind(stat.def, stat.temp) | |||
} | |||
} | |||
stat.def["Method"]<-stat.test | |||
return(stat.def) | |||
} | |||
generate_labstats<-function(table_stat, table, value.var, x, group, y="max", bracket.offset=0.05, bracket.length=0.02){ | |||
table[,group]<-as.factor(table[,group]) | |||
table[,x]<-as.factor(table[,x]) | |||
se<-function(x, na.rm=F) sd(x, na.rm = na.rm)/sqrt(length(x)) | |||
if (y == "max"){ | |||
formula<-as.formula(paste0(colnames(table_stat)[1], "~.")) | |||
agg<-dcast(table, formula, value.var = value.var, fun.aggregate = max, na.rm=T) | |||
}else if (y == "mean"){ | |||
formula<-as.formula(paste0(colnames(table_stat)[1], "~", group)) | |||
agg<-dcast(table, formula, value.var = value.var, fun.aggregate = mean, na.rm=T) | |||
agg<- data.frame(x=agg[,1], "."=apply(agg[,2:ncol(agg)], 1, max, na.rm=T)) | |||
colnames(agg)[1]<-x | |||
}else if (y == "mean+sd"){ | |||
formula<-as.formula(paste0(colnames(table_stat)[1], "~", group)) | |||
agg<- dcast(table, formula, value.var = value.var, fun.aggregate = function(x) mean(x,na.rm=T)+sd(x,na.rm=T)) | |||
agg<- data.frame(x=agg[,1], "."=apply(agg[,2:ncol(agg)], 1, max, na.rm=T)) | |||
colnames(agg)[1]<-x | |||
}else if (y == "mean+se"){ | |||
formula<-as.formula(paste0(colnames(table_stat)[1], "~", group)) | |||
agg<- dcast(table, formula, value.var = value.var, fun.aggregate = function(x) mean(x,na.rm=T)+se(x,na.rm=T)) | |||
agg<- data.frame(agg[,1], "."=apply(agg[,2:ncol(agg)], 1, max, na.rm=T)) | |||
colnames(agg)[1]<-x | |||
} | |||
t<-data.frame("y1"=merge(table_stat, agg ,sort=F)[,"."]+diff(range(table[value.var], na.rm = T))*bracket.offset, | |||
"y2"=merge(table_stat, agg ,sort=F)[,"."]+diff(range(table[value.var], na.rm = T))*bracket.offset, | |||
"x1"= match(table_stat[,x], unique(table[,x]))+ | |||
0.75*((match(table_stat$group1, levels(table[,group]))-0.5)/length(levels(table[,group]))-0.5), | |||
"x2"= match(table_stat[,x], unique(table[,x]))+ | |||
0.75*((match(table_stat$group2, levels(table[,group]))-0.5)/length(levels(table[,group]))-0.5) | |||
) | |||
for (dia in unique(table_stat[,1])){ | |||
t[table_stat[,x] == dia,"y1"]<-seq(t[table_stat[,x] == dia,"y1"][1], | |||
t[table_stat[,x] == dia,"y1"][1]+diff(range(table[,value.var], na.rm = T))*0.05*(nrow(table_stat[table_stat[,x] == dia,])-1), | |||
by=diff(range(table[,value.var], na.rm = T))*0.05) | |||
t[table_stat[,x] == dia,"y2"]<-t[table_stat[,x] == dia,"y1"] | |||
} | |||
t_def<-as.data.frame(matrix(ncol=4, nrow=0)) | |||
for (row in 1:nrow(t)){ | |||
t_def<-rbind(t_def, t[row,], | |||
c(t[row,"y1"]-diff(range(table[,value.var], na.rm = T))*bracket.length, t[row,"y1"], t[row,"x1"], t[row,"x1"]), | |||
c(t[row,"y1"]-diff(range(table[,value.var], na.rm = T))*bracket.length, t[row,"y1"], t[row,"x2"], t[row,"x2"])) | |||
} | |||
t_lab<-data.frame("x"=t$x1+(t$x2-t$x1)/2, "y"=t$y1+diff(range(table[,value.var], na.rm = T))*0.005, check.names = F) | |||
return(list("label"=t_lab, "brackets"=t_def)) | |||
} | |||
secfile<-function(file){ | |||
ext<-strsplit(file, ".", fixed = T)[[1]] | |||
ext<-ext[length(ext)] | |||
num<-1 | |||
while(file.exists(file) == T){ | |||
if(num == 1){ | |||
file_tmp<-strsplit(file, ".", fixed=T)[[1]] | |||
file<-paste0(paste(file_tmp[1:(length(file_tmp)-1)], collapse = "."),"_",num,".",file_tmp[length(file_tmp)]) | |||
}else{ | |||
file_tmp<-paste(strsplit(file, "_", fixed=T)[[1]][-length(strsplit(file, "_", fixed=T)[[1]])], collapse = "_") | |||
file<-paste0(file_tmp, "_", num,".",ext) | |||
} | |||
num<-num+1 | |||
} | |||
return(file) | |||
} |