Browse Source

First version with the server part.

main
marcelcosta 1 year ago
parent
commit
9db921e7e1
1 changed files with 335 additions and 5 deletions
  1. +335
    -5
      TCGA_request/app.R

+ 335
- 5
TCGA_request/app.R

@ -1,5 +1,14 @@
library(shiny)
## Library loadings
library(tidyverse)
library(GSVA)
library(rstatix)
library(ggpubr)
library(coxphf)
library(survival)
library(survminer)
ui <- fluidPage(
# Application title
@ -15,18 +24,339 @@ ui <- fluidPage(
# Show a plot of the generated distribution
mainPanel(
plotOutput("distPlot"),
plotOutput("plotEndo")
uiOutput("distPlot")
# plotOutput("plotEndo")
)
)
)
# Define server logic
server <- function(input, output) {
vars<-reactiveValues()
vars$height<-900
output$distPlot<- renderUI({
observeEvent(input$goButton, {})
height=vars$height
width=900
plotOutput("dsPlot", width=paste0(width,"px"), height = paste0(height, "px"))
})
grafic<-eventReactive(input$goButton, {
progress <- shiny::Progress$new(min=0, max=6)
progress$set(message = "Start", value = 1)
if (input$ds_input == "endo"){
vars$height=1500
}else{
vars$height=800
}
## Parameters definition
ds.list<-input$ds_input
gene<-input$gene_input
for (ds in ds.list){
## Loading pathways
load("../pathways.Rdata")
Pathways
## Loading dataset
datasets<-c("endo"="../data/endo_tcga_2020.Rdata",
"uveal"="../data/uveal_tcga_MCG.Rdata",
"prostate"="../data/prostate_tcga_MCG.Rdata")
load(datasets[ds])
## Gene expression
gex<-ex %>%
as.data.frame() %>%
add_column("Gene"=rownames(.)) %>%
gather(SampleID, GEX, -Gene) %>%
filter(Gene %in% gene) %>%
mutate(MedExp=factor(GEX > median(GEX, na.rm=T), levels=c(FALSE,TRUE), labels=c("Low","High")))
### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
### Pathways Analysis
### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Runned once for each dataset and stored in an Object
# Perform GSVA function
# GSVA <- gsva(expr=as.matrix(ex), gset.idx.list=Pathways,
# mx.diff=TRUE, verbose=TRUE)
# summary(reshape2::melt(GSVA)$value)
#
# # Vector to change pathways names
# pathways <- c("PD1 Signaling", "VEGF (Angiogenesis)",
# "Extracellular matrix interaction", "Epitelial Mesenchimal Transition",
# "Adherent junctions", "TGFB Signaling", "Inflamatory Signaling",
# "B cell activation","CTLA4 Tcell Signaling","Antigen Processing",
# "IL6 Signaling", "CD8 T cell receptor", "Antigen Presentation",
# "IFN Gamma Signaling", "T cell activation")
#
# rownames(GSVA) <- pathways
# colnames(GSVA) <- gsub("\\.", "-", colnames(GSVA))
load("../GSVAs/GSVAs.Rdata")
if (ds == "endo"){GSVA<-GSVAendo}
if (ds == "uveal"){GSVA<-GSVAuveal}
if (ds == "prostate"){GSVA<-GSVAprostate}
progress$set(message = "datasets loaded", value = 2)
GSVAsummary<-GSVA %>%
as.data.frame %>%
add_column("Path"=rownames(.)) %>%
gather(SampleID, GSVA, -Path) %>%
merge(gex %>% select(-Gene)) %>%
group_by(Path, MedExp) %>%
summarise(Value=median(GSVA))
GSVAstats<- GSVA %>%
as.data.frame %>%
add_column("Path"=rownames(.)) %>%
gather(SampleID, GSVA, -Path) %>%
merge(gex %>% select(-Gene)) %>%
group_by(Path) %>%
wilcox_test(GSVA~MedExp)
GSVAstats["signif"]<-ifelse(GSVAstats$p < 0.05, "*", "")
GSVAplot<-ggplot(GSVAsummary, aes(x=MedExp, y=Path))+
geom_tile(aes(fill=Value), color="white", size=1.75) +
scale_fill_gradientn(colours=c("darkblue", "blue3","snow","red3", "firebrick"),
limits=c(summary(GSVAsummary$Value)[1],summary(GSVAsummary$Value)[6])) +
scale_x_discrete(position = "top", limits=c("High", "Low"))+
scale_y_discrete(limits=rev(rownames(GSVA)))+
guides(fill = guide_colorbar(barwidth = 6, barheight = 0.5))+
geom_text(data=GSVAstats,aes(x=2.9, label=signif), size=6, hjust=2, vjust=0.65, colour="black")+
# theme_minimal()+
theme(legend.justification = c(1, 2),
legend.position = "bottom",
legend.direction = "horizontal",
legend.text=element_text(size=8),
plot.title = element_text(hjust = 0.5, lineheight=.8, face="bold"),
text = element_text(size=12),
axis.ticks = element_blank(),
axis.title.x = element_blank(),
axis.title.y = element_blank(),
axis.text.x=element_text(face="bold",size=12),
axis.text.y=element_text(size=12),
panel.grid.major = element_blank(),
panel.border = element_blank(),
panel.background = element_blank(),
plot.margin=unit(c(1,2,1,1.5),"cm"))
progress$set(message = "Heatmap", value = 3)
### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
### Survival Analysis
### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if (ds == "endo"){
labels<-merge(clin, gex, by.x = "PATIENT_ID", by.y="SampleID")
labels$OS <- as.numeric(as.character(factor(labels$OS_STATUS, levels=c("LIVING", "DECEASED"), labels=c(0,1))))
labels$OS.Months <- as.numeric(labels$OS_MONTHS)
}
if (ds == "uveal"){
labels<-merge(clin, gex, by.x = "Patient.ID", by.y="SampleID")
}
if (ds == "prostate"){
labels<-merge(clin, gex, by.x = "id", by.y="SampleID")
labels$OS <- labels$os
labels$OS.Months <- labels$OS_MONTHS
}
fit_os <- survfit(Surv(OS.Months, OS) ~ MedExp, data=labels)
fit_os
### DFS
if (ds == "endo"){
labels$DFS <- as.numeric(as.character(factor(labels$DFS_STATUS, levels=c("DiseaseFree", "Recurred/Progressed"), labels=c(0,1))))
labels$DFS.Months <- as.numeric(labels$DFS_MONTHS)
}
if (ds == "prostate"){
labels$DFS <- labels$dfs
labels$DFS.Months <- as.numeric(labels$DFS_MONTHS)
}
fit_dfs <- survfit(Surv(as.numeric(DFS.Months), DFS) ~ MedExp, data=labels)
fit_dfs
# plots
km1 <- ggsurvplot(fit=fit_os, data=labels,
font.main = c(14, "plain", "black"),
font.x = c(12, "plain", "black"),
font.y = c(12, "plain", "black"),
pval = TRUE,
legend.title = gene,
legend.labs = c("Low", "High"),
#legend = c(0.2, 0.2),
palette=c("dodgerblue4","firebrick3"),
font.legend = c(12, "plain", "black"),
ylab="Overall survival probability")
km2 <- ggsurvplot(fit=fit_dfs, data=labels,
font.main = c(14, "plain", "black"),
font.x = c(12, "plain", "black"),
font.y = c(12, "plain", "black"),
pval = TRUE,
legend.title = gene,
legend.labs = c("Low", "High"),
#legend = c(0.2, 0.2),
palette=c("dodgerblue4","firebrick3"),
font.legend = c(12, "plain", "black"),
ylab="Progression free probability")
km<-ggarrange(km1$plot, km2$plot, ncol=2, nrow=1, common.legend = T)
progress$set(message = "Survival", value = 4)
# ggsave("",height=3.5, width=7)
### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
### Boxplot Recurrences
### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if (ds == "endo"){
bp2 <- ggplot(labels %>% filter(!is.na(DFS_STATUS)), aes(x=DFS_STATUS, y=GEX)) +
geom_boxplot(color="black", outlier.shape = NA) +
geom_jitter(position=position_jitter(0.2), size=1.5,
aes(x=DFS_STATUS, y=GEX, color=DFS_STATUS)) +
labs(title=gene,
x="", y = "log2(gene expression)") +
scale_color_manual(values=c("dodgerblue3", "firebrick3")) +
theme(plot.title = element_text(hjust = 0.5, size=12, face="bold"), panel.spacing = unit(1, "lines"),
axis.text.x = element_text(size=12),
axis.text.y = element_text(size=8),
strip.text.x = element_text(size = 12))+
stat_compare_means(method = "wilcox.test",
size=4, label="p.format", label.x=2.1)
}
if (ds == "uveal"){
bp2 <- ggplot(labels %>%
filter(!is.na(DFS)) %>%
mutate(DFS=factor(DFS, labels = c("DiseaseFree","Recurred/Progressed"))),
aes(x=DFS, y=GEX)) +
geom_boxplot(color="black", outlier.shape = NA) +
geom_jitter(position=position_jitter(0.2), size=1.5,
aes(x=DFS, y=GEX, color=DFS)) +
labs(title=gene,
x="", y = "log2(gene expression)") +
scale_color_manual(values=c("dodgerblue3", "firebrick3")) +
theme(plot.title = element_text(hjust = 0.5, size=12, face="bold"), panel.spacing = unit(1, "lines"),
axis.text.x = element_text(size=12),
axis.text.y = element_text(size=8),
strip.text.x = element_text(size = 12))+
stat_compare_means(method = "wilcox.test",
size=4, label="p.format", label.x=2.1)
}
if (ds == "prostate"){
bp2 <- ggplot(labels %>%
filter(!is.na(DFS_STATUS)) %>%
filter(DFS_STATUS != "[Not Available]"),
aes(x=DFS_STATUS, y=GEX)) +
geom_boxplot(color="black", outlier.shape = NA) +
geom_jitter(position=position_jitter(0.2), size=1.5,
aes(x=DFS_STATUS, y=GEX, color=DFS_STATUS)) +
labs(title=gene,
x="", y = "log2(gene expression)") +
scale_color_manual(values=c("dodgerblue3", "firebrick3")) +
theme(plot.title = element_text(hjust = 0.5, size=12, face="bold"), panel.spacing = unit(1, "lines"),
axis.text.x = element_text(size=12),
axis.text.y = element_text(size=8),
strip.text.x = element_text(size = 12))+
stat_compare_means(method = "wilcox.test",
size=4, label="p.format", label.x=2.1)
}
progress$set(message = "Boxplot", value = 5)
# jpeg("/shared/users/Sandra/01_collaborations/genes_piulats/HDAC6/uveal_HDAC6_boxplot1.jpg",
# # units="in", width=4,5, height=3.5, res=300)
# bp2
# dev.off()
### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
### Plot part 1
### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
plotAll<-ggarrange(km, ggarrange(GSVAplot, bp2), ncol = 1)
plotAll<-annotate_figure(plotAll, top = text_grob(paste0(gene,"-",ds),
color = "black", face = "bold", size = 14))
# ggsave(paste0("result/",gene,"_",ds,"_results.png"), plotAll,width = 11, height = 9)
}
if ("endo" %in% ds.list){
# -------------------------------------------------------------------------------
# by histological grade
table(labels$hist_grade)
labels$hist_grade <- factor(labels$hist_grade,
levels = c("G1", "G2", "G3", "High Grade"))
labels <- labels[order(labels$hist_grade),]
hg <- ggplot(labels, aes(x=hist_grade, y=GEX))+
geom_boxplot(color="black", outlier.shape = NA, aes(fill=hist_grade))+
scale_fill_brewer(palette = "Pastel2")+
geom_jitter(position=position_jitter(0.2), size=1.5,
aes(x=hist_grade, y=GEX), alpha=0.5) +
guides(fill="none")+
labs(title=paste0(gene,", Histological grade"),
x="", y = "log2(gene expression)") +
theme(plot.title = element_text(hjust = 0.5, size=12, face="bold"), panel.spacing = unit(1, "lines"),
axis.text.x = element_text(size=12),
axis.text.y = element_text(size=8),
strip.text.x = element_text(size = 12))+
stat_compare_means(method = "kruskal.test", size=4, label="p.format", label.x=4)
table(labels$cluster)
labels$cluster <- factor(labels$cluster, levels = c("CN_low", "CN_high", "MSI", "POLE"))
labels <- labels[order(labels$cluster),]
bp.cluster <- ggplot(labels, aes(x=cluster, y=GEX)) +
geom_boxplot(color="black", outlier.shape = NA, aes(fill=cluster)) +
scale_fill_brewer(palette = "Pastel2")+
scale_x_discrete(limits=levels(labels$cluster))+
guides(fill="none")+
geom_jitter(position=position_jitter(0.2), size=1.5,
aes(x=cluster, y=GEX), alpha=0.5) +
labs(title=paste0(gene," Molecular classification"),
x="", y = "log2(gene expression)") +
theme(plot.title = element_text(hjust = 0.5, size=12, face="bold"), panel.spacing = unit(1, "lines"),
axis.text.x = element_text(size=12),
axis.text.y = element_text(size=8),
strip.text.x = element_text(size = 12))+
stat_compare_means(method = "kruskal.test", size=4, label="p.format", label.x=4)
table(labels$histology, exclude=NULL)
labels$histology <- factor(labels$histology)
bp.hg <- ggplot(labels, aes(x=histology, y=GEX)) +
geom_boxplot(color="black", outlier.shape = NA, aes(fill=histology)) +
scale_fill_brewer(palette = "Pastel2")+
guides(fill="none")+
geom_jitter(position=position_jitter(0.2), size=1.5,
aes(x=histology, y=GEX), alpha=0.5) +
labs(title=paste0(gene, ", Histology"),
x="", y = "log2(gene expression)") +
theme(plot.title = element_text(hjust = 0.5, size=12, face="bold"), panel.spacing = unit(1, "lines"),
axis.text.x = element_text(size=12),
axis.text.y = element_text(size=8),
strip.text.x = element_text(size = 12))+
stat_compare_means(method = "kruskal.test", size=4, label="p.format", label.x=2)
progress$set(message = "Ploting", value = 6)
progress$close()
return(ggarrange(
plotAll,
ggarrange(hg, bp.cluster, bp.hg),
ncol=1
))
}else{
return(plotAll)
}
})
output$dsPlot <- renderPlot({
grafic()
})
# output$distPlot <- renderPlot({
#
# })
}
# Run the application

Loading…
Cancel
Save