|
|
@ -374,30 +374,7 @@ server <- function(input, output) { |
|
|
|
oneside<-"" |
|
|
|
|
|
|
|
table<-analysis$taula |
|
|
|
if ("ID.animal" %in% colnames(table)){table<-rename(table, "ID animal"=`ID.animal`)} |
|
|
|
if ("ID" %in% colnames(table)){table<-rename(table, "ID animal"=ID)} |
|
|
|
if ("ID.tumor" %in% colnames(table)){table<-rename(table, "ID tumor"=`ID.tumor`)} |
|
|
|
# table[table$ID.tumor == "R","0"]<-NA |
|
|
|
col_nodays<-c("ID","Code", "Cage","Group", "ID.animal","ID animal", "ID.tumor", "ID tumor", "TS","DPV", "Absorbance") |
|
|
|
if (length(grep(0, colnames(table)[!colnames(table) %in% col_nodays])) == 0 & input$vacc == "Sí"){ |
|
|
|
table["0"]<-0 |
|
|
|
} |
|
|
|
table<-melt(table, id=colnames(table)[colnames(table) %in% col_nodays], variable.name = "Timepoint") |
|
|
|
table$Timepoint<-gsub("[A-Za-z ]","",table$Timepoint) |
|
|
|
# print(table) |
|
|
|
if ("DPV" %in% colnames(table)){ |
|
|
|
table<-dcast(table, Cage+`ID animal`+`ID tumor`+Group+Timepoint~DPV, value.var = "value") |
|
|
|
table$Major<-table$Major |
|
|
|
table$Minor<-table$Minor |
|
|
|
table["Volume"]<-((table$Major*table$Minor*table$Minor)*(pi/6)) |
|
|
|
} |
|
|
|
if ("TS" %in% colnames(table)){ |
|
|
|
table<-dcast(table, Cage+`ID animal`+`ID tumor`+Group+Timepoint~TS, value.var = "value") |
|
|
|
table["Volume"]<-table$`TS-Deep`*table$`TS-Length`*table$`TS-Width`*pi/6 |
|
|
|
} |
|
|
|
if (!"Volume" %in% colnames(table)){table<-rename(table, "Volume"=value)} |
|
|
|
table<-table %>% filter(!is.na(Group)) |
|
|
|
table$Timepoint<-factor(table$Timepoint, levels=mixedsort(as.numeric(as.character(unique(table$Timepoint))))) |
|
|
|
if (input$increase_volume){ |
|
|
|
timepoints<-unique(table$Timepoint) |
|
|
|
table<-table %>% select(-Major, -Minor) %>% |
|
|
@ -406,11 +383,7 @@ server <- function(input, output) { |
|
|
|
gather(Timepoint, Volume, -Cage, -`ID animal`, -`ID tumor`, -Group) %>% |
|
|
|
mutate(Volume=case_when(Volume < 0 ~ 0, T~Volume)) |
|
|
|
} |
|
|
|
table$Timepoint<-factor(table$Timepoint, levels=mixedsort(as.numeric(as.character(unique(table$Timepoint))))) |
|
|
|
analysis$taula_def<-table |
|
|
|
analysis$taula_vol<-dcast(table, Cage+`ID animal`+`ID tumor`~Timepoint,value.var = "Volume") |
|
|
|
table_plot<-dcast(dcast(table %>% filter(!is.na(Volume)), `ID animal`+Group+Timepoint~., value.var = "Volume", fun.aggregate = mean), Group~Timepoint) |
|
|
|
table_plot |
|
|
|
table %>% group_by(Group, DayPostInoc, Side) %>% count() %>% spread(DayPostInoc, n) |
|
|
|
} |
|
|
|
}) |
|
|
|
output$cin_group<-renderPlot({ |
|
|
|