|
@ -88,6 +88,7 @@ server <- function(input, output) { |
|
|
dades<-reactiveValues() |
|
|
dades<-reactiveValues() |
|
|
dades$taula<-NULL |
|
|
dades$taula<-NULL |
|
|
dades$groups<-NULL |
|
|
dades$groups<-NULL |
|
|
|
|
|
dades$sex<-NULL |
|
|
dades$db<-NULL |
|
|
dades$db<-NULL |
|
|
observe({ |
|
|
observe({ |
|
|
if (!is.null(input$file_sizes)){ |
|
|
if (!is.null(input$file_sizes)){ |
|
@ -103,6 +104,7 @@ server <- function(input, output) { |
|
|
} |
|
|
} |
|
|
dades$taula<-taula |
|
|
dades$taula<-taula |
|
|
dades$groups<-read.xlsx(input$file_sizes$datapath, sheet = 2)[,1] |
|
|
dades$groups<-read.xlsx(input$file_sizes$datapath, sheet = 2)[,1] |
|
|
|
|
|
dades$sex<-read.xlsx(input$file_sizes$datapath, sheet = 3, sep.names = " ") |
|
|
} |
|
|
} |
|
|
}) |
|
|
}) |
|
|
output$firstPlot <- renderPlot({ |
|
|
output$firstPlot <- renderPlot({ |
|
@ -148,56 +150,76 @@ server <- function(input, output) { |
|
|
low_cuttof<-input$lowcut |
|
|
low_cuttof<-input$lowcut |
|
|
print(up_cuttof) |
|
|
print(up_cuttof) |
|
|
df<-df[df$Volume < up_cuttof & df$Volume >= low_cuttof,] |
|
|
df<-df[df$Volume < up_cuttof & df$Volume >= low_cuttof,] |
|
|
|
|
|
|
|
|
|
|
|
df<-merge(df, dades$sex) |
|
|
|
|
|
|
|
|
# df["Mouse"]<-gsub("[a-zA-Z]", "", df$MouseID) |
|
|
# df["Mouse"]<-gsub("[a-zA-Z]", "", df$MouseID) |
|
|
print(df$Volume) |
|
|
print(df$Volume) |
|
|
s<-shapiro.test(df$Volume)[[2]] |
|
|
s<-shapiro.test(df$Volume)[[2]] |
|
|
|
|
|
|
|
|
ngroup<-length(dades$groups) |
|
|
ngroup<-length(dades$groups) |
|
|
ind.list<-list() |
|
|
|
|
|
pval.list<-list() |
|
|
|
|
|
lvn.list<-list() |
|
|
|
|
|
test.list<-list() |
|
|
|
|
|
for (data in 1:input$iterations){ |
|
|
|
|
|
interr=T |
|
|
|
|
|
while(interr == T){ |
|
|
|
|
|
ind<-sample(rep(dades$groups, each=ceiling(length(unique(df$`ID animal`))/ngroup)), length(unique(df$`ID animal`))) |
|
|
|
|
|
df_temp<-merge(df[,c("ID animal", "ID tumor","Volume")], data.frame("ID animal"=unique(df$`ID animal`), "group"=as.factor(ind),check.names=F)) |
|
|
|
|
|
if ((nrow(df_temp)/ngroup) %% 2 == 0){ |
|
|
|
|
|
interr<-any(table(df_temp$group) < floor(nrow(df_temp)/ngroup) | table(df_temp$group) > ceiling(nrow(df_temp)/ngroup)) |
|
|
|
|
|
|
|
|
df_def<-list() |
|
|
|
|
|
print(head(df)) |
|
|
|
|
|
for (sex.var in c("male","female")){ |
|
|
|
|
|
print(sex.var) |
|
|
|
|
|
df_sex<-df %>% filter(`sex` == sex.var) |
|
|
|
|
|
ind.list<-list() |
|
|
|
|
|
pval.list<-list() |
|
|
|
|
|
lvn.list<-list() |
|
|
|
|
|
test.list<-list() |
|
|
|
|
|
for (data in 1:input$iterations){ |
|
|
|
|
|
interr=T |
|
|
|
|
|
while(interr == T){ |
|
|
|
|
|
ind<-sample(rep(dades$groups, each=ceiling(length(unique(df_sex$`ID animal`))/ngroup)), length(unique(df_sex$`ID animal`))) |
|
|
|
|
|
df_sex<-merge(df_sex[,c("ID animal", "ID tumor","Volume")], data.frame("ID animal"=unique(df_sex$`ID animal`), "group"=as.factor(ind),check.names=F)) |
|
|
|
|
|
if ((nrow(df_sex)/ngroup) %% 2 == 0){ |
|
|
|
|
|
interr<-any(table(df_sex$group) < floor(nrow(df_sex)/ngroup) | table(df_sex$group) > ceiling(nrow(df_sex)/ngroup)) |
|
|
|
|
|
}else{ |
|
|
|
|
|
# interr<-any(table(df_sex$group) < (floor(nrow(df_sex)/ngroup)-1) | table(df_sex$group) > (ceiling(nrow(df_sex)/ngroup)+1)) |
|
|
|
|
|
interr<-diff(range(table(ind))) > 1 |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
ind.list[[data]]<-df_sex[,c("ID animal","ID tumor","group","Volume")] |
|
|
|
|
|
lvn.list[data]<-leveneTest(Volume ~ group, data = df_sex[,3:4])[[2]][1] |
|
|
|
|
|
if (s < 0.05){ |
|
|
|
|
|
k<-kruskal.test(df_sex$Volume,df_sex$group) |
|
|
|
|
|
test.list[data]<-k[[1]][1] |
|
|
|
|
|
pval.list[data]<-k[[3]][1] |
|
|
}else{ |
|
|
}else{ |
|
|
# interr<-any(table(df_temp$group) < (floor(nrow(df_temp)/ngroup)-1) | table(df_temp$group) > (ceiling(nrow(df_temp)/ngroup)+1)) |
|
|
|
|
|
interr<-diff(range(table(ind))) > 1 |
|
|
|
|
|
|
|
|
res.aov<-aov(Volume~group, data=df_sex) |
|
|
|
|
|
pval.list[data]<-summary(res.aov)[[1]][[5]][1] |
|
|
|
|
|
test.list[data]<-summary(res.aov)[[1]][[4]][1] |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
ind.list[[data]]<-df_temp[,c("ID animal", "ID tumor","group","Volume")] |
|
|
|
|
|
lvn.list[data]<-leveneTest(Volume ~ group, data = df_temp[,3:4])[[2]][1] |
|
|
|
|
|
if (s < 0.05){ |
|
|
|
|
|
k<-kruskal.test(df_temp$Volume,df_temp$group) |
|
|
|
|
|
test.list[data]<-k[[1]][1] |
|
|
|
|
|
pval.list[data]<-k[[3]][1] |
|
|
|
|
|
}else{ |
|
|
|
|
|
res.aov<-aov(Volume~group, data=df_temp) |
|
|
|
|
|
pval.list[data]<-summary(res.aov)[[1]][[5]][1] |
|
|
|
|
|
test.list[data]<-summary(res.aov)[[1]][[4]][1] |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
index<-which(unlist(lvn.list) == min(unlist(lvn.list)[which(unlist(pval.list) %in% sort(unlist(pval.list), decreasing = T)[1:20])])) |
|
|
|
|
|
print(df_sex) |
|
|
|
|
|
df_def[[sex.var]]<-merge(df_sex %>% select(-group), ind.list[[index]]) |
|
|
} |
|
|
} |
|
|
index<-which(unlist(lvn.list) == min(unlist(lvn.list)[which(unlist(pval.list) %in% sort(unlist(pval.list), decreasing = T)[1:20])])) |
|
|
|
|
|
df_def<-merge(df, ind.list[[index]]) |
|
|
|
|
|
|
|
|
# df_def<-do.call(rbind, c(df_def, make.row.names=F)) |
|
|
|
|
|
# lapply(df_def, function(x) x %>% as_tibble %>% print(n=Inf)) |
|
|
|
|
|
df_def<-rbind(df_def[[1]], df_def[[2]], make.row.names=F) |
|
|
if ("Group" %in% colnames(df_def)){ |
|
|
if ("Group" %in% colnames(df_def)){ |
|
|
df_def<-df_def %>% select(-"Group") |
|
|
df_def<-df_def %>% select(-"Group") |
|
|
} |
|
|
} |
|
|
df_def<-merge(dades$taula %>% select(-Group), df_def[,c("ID animal", "group")] %>% unique, all=T, by="ID animal") %>% select(c(`ID animal`, `ID tumor`, Volume, Cage, Major, Minor, group)) |
|
|
|
|
|
|
|
|
df_def<-merge(merge(dades$taula, dades$sex) %>% select(-Group), df_def[,c("ID animal", "group")] %>% unique, all=T, by="ID animal") %>% select(c(`ID animal`, `sex`,`ID tumor`, Volume, Cage, Major, Minor, group)) |
|
|
df_def[!paste0(df_def$`ID animal`, df_def$`ID tumor`) %in% paste0(df$`ID animal`, df$`ID tumor`),"group"]<-NA |
|
|
df_def[!paste0(df_def$`ID animal`, df_def$`ID tumor`) %in% paste0(df$`ID animal`, df$`ID tumor`),"group"]<-NA |
|
|
dades$db<-df_def |
|
|
dades$db<-df_def |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ggarrange( |
|
|
ggplot(df_def, aes(group, Volume))+ |
|
|
ggplot(df_def, aes(group, Volume))+ |
|
|
geom_boxplot(outlier.alpha = F)+ |
|
|
geom_boxplot(outlier.alpha = F)+ |
|
|
geom_jitter(width=0.25)+ |
|
|
|
|
|
geom_point(stat="summary", color="blue", size=3) |
|
|
|
|
|
|
|
|
geom_jitter(width=0.25, aes(color=sex))+ |
|
|
|
|
|
geom_point(stat="summary", color="blue", size=3)+ |
|
|
|
|
|
theme(axis.text.x = element_text(angle=90, hjust=1, vjust=0.5)), |
|
|
# lims(y=c(0,max(df_def$Volume)+10)) |
|
|
# lims(y=c(0,max(df_def$Volume)+10)) |
|
|
|
|
|
ggarrange( |
|
|
|
|
|
ggplot(df_def, aes(sex, Volume))+ |
|
|
|
|
|
geom_boxplot(outlier.alpha = F)+ |
|
|
|
|
|
geom_quasirandom(width=0.3), |
|
|
|
|
|
ggplot(df_def, aes(group, fill=sex))+ |
|
|
|
|
|
geom_bar(stat="count", color="black", position="dodge")+ |
|
|
|
|
|
guides(fill="none")+ |
|
|
|
|
|
theme(axis.text.x = element_text(angle=90, hjust=1, vjust=0.5)), ncol = 1, heights = c(0.35, 0.65)), |
|
|
|
|
|
nrow = 1, aligh="h", widths = c(0.65, 0.35)) |
|
|
}) |
|
|
}) |
|
|
output$distPlot <- renderPlot({ |
|
|
output$distPlot <- renderPlot({ |
|
|
observeEvent(dades$taula, {}) |
|
|
observeEvent(dades$taula, {}) |
|
@ -295,7 +317,7 @@ server <- function(input, output) { |
|
|
analysis$taula_vol<-NULL |
|
|
analysis$taula_vol<-NULL |
|
|
observe({ |
|
|
observe({ |
|
|
if (!is.null(input$file_analy)){ |
|
|
if (!is.null(input$file_analy)){ |
|
|
analysis$taula<-read.xlsx(input$file_analy$datapath, sheet = 1, check.names = F, sep.names = " ") |
|
|
|
|
|
|
|
|
analysis$taula<-read.xlsx(input$file_analy$datapath, sheet = 1, check.names = F, sep.names = " ") %>% select(-sex) |
|
|
} |
|
|
} |
|
|
}) |
|
|
}) |
|
|
output$cutoffUI<-renderUI({ |
|
|
output$cutoffUI<-renderUI({ |
|
|