library(shiny)
|
|
# library(ggplot2)
|
|
library(reshape2)
|
|
library(openxlsx)
|
|
# library(dplyr)
|
|
library(car)
|
|
library(ggbeeswarm)
|
|
library(gtools)
|
|
library(gridExtra)
|
|
source("../../funcions.R")
|
|
library(survminer)
|
|
library(survival)
|
|
library(plotrix)
|
|
library(tidyverse)
|
|
library(ggpubr)
|
|
library(rstatix)
|
|
|
|
# Define UI for application
|
|
ui <- fluidPage(
|
|
|
|
#Navbar
|
|
navbarPage("Seguimiento in vivos",
|
|
tabPanel("Diseño",
|
|
sidebarPanel(
|
|
fileInput(inputId = "file_sizes", label = "Hoja de tamaños", multiple = F),
|
|
selectInput(inputId = "measure_sys", "Sistema de medida", selected = "L-W-D", choices = c("L-W-D","Min-Max","Absorbance")),
|
|
uiOutput('ncages'),
|
|
uiOutput('lowcut'),
|
|
uiOutput('upcut'),
|
|
uiOutput('goButton'),
|
|
uiOutput('iterations'),
|
|
downloadButton("downloadData", "Descargar Excel")
|
|
),
|
|
mainPanel(
|
|
plotOutput("firstPlot"),
|
|
plotOutput("distPlot"),
|
|
tableOutput("distTable")
|
|
)
|
|
),
|
|
tabPanel("Análisis",
|
|
sidebarPanel(
|
|
fileInput(inputId = "file_analy", label = "Hoja de análisis", multiple = F),
|
|
selectInput(inputId = "vacc", "Experimento de Vacunación", selected = "No", choices = c("Sí","No")),
|
|
uiOutput('cutoffUI'),
|
|
checkboxInput("filter_stats","Filtrar Estadística"),
|
|
downloadButton("downloadVolume", "Descargar Volúmenes")
|
|
),
|
|
mainPanel(
|
|
h3('Ratones'),
|
|
tableOutput('ntable'),
|
|
h3('Cinéticas'),
|
|
plotOutput('cin_group'),
|
|
plotOutput('cin_indiv'),
|
|
plotOutput('survival', height="800px"),
|
|
h3('Estadística'),
|
|
verbatimTextOutput('stats'),
|
|
tableOutput('tab_stats')
|
|
)),
|
|
tabPanel("Exportar",
|
|
sidebarPanel(width=2,
|
|
h3('Seleccionar figura'),
|
|
selectInput("fig_id", "", selected="", choices=c("Cinética Grupo", "Cinética Individual", "Survival")),
|
|
h3('Formato'),
|
|
sliderInput("width", "Ancho", min=1000, max=20000, step=1000, value=10000),
|
|
sliderInput("height", "Altura", min=1000, max=20000, step=1000, value=6000),
|
|
textInput("colors", label="Colors", value=""),
|
|
sliderInput("errorbar-width", "% Ancho errorbars", min=0.05, max=1, step=0.05, value=0.05),
|
|
sliderInput("point-size", "Tamaño puntos", min=1, max=10, step=1, value=3),
|
|
sliderInput("font-size", "Tamaño textos", min=5, max=30, step=1, value=11),
|
|
checkboxInput(inputId = "logscale", label="Escala logarítmica eje Y", value=F),
|
|
checkboxInput(inputId = "legend", label = "Mostrar llegenda", value = T),
|
|
selectInput("theme", "Seleccionar Tema", selected="BW", choices=c("BW", "Default", "Classic")),
|
|
downloadButton("downloadPicture", "Exportar")
|
|
),
|
|
mainPanel(
|
|
uiOutput("expPlotUI")
|
|
)
|
|
)
|
|
)
|
|
|
|
)
|
|
|
|
# Define server logic required to draw a histogram
|
|
server <- function(input, output) {
|
|
|
|
# Diseño
|
|
dades<-reactiveValues()
|
|
dades$taula<-NULL
|
|
dades$groups<-NULL
|
|
dades$db<-NULL
|
|
observe({
|
|
if (!is.null(input$file_sizes)){
|
|
taula<-read.xlsx(input$file_sizes$datapath, sheet = 1, sep.names = " ")
|
|
if ("DPV" %in% colnames(taula)){
|
|
taula<-dcast(taula, Cage+`ID animal`+`ID tumor`+Group~DPV, value.var = "0")
|
|
# taula$Major<-taula$Major/1000
|
|
# taula$Minor<-taula$Minor/1000
|
|
# taula["Volume"]<-((taula$Major*taula$Minor*taula$Minor)*(pi/6))*1000
|
|
taula$Major<-taula$Major
|
|
taula$Minor<-taula$Minor
|
|
taula["Volume"]<-((taula$Major*taula$Minor*taula$Minor)*(pi/6))
|
|
}
|
|
dades$taula<-taula
|
|
dades$groups<-read.xlsx(input$file_sizes$datapath, sheet = 2)[,1]
|
|
}
|
|
})
|
|
output$firstPlot <- renderPlot({
|
|
observeEvent(dades$taula, {})
|
|
if (!is.null(dades$taula)){
|
|
ggplot(dades$taula, aes(x="1", y=Volume))+geom_hline(yintercept = c(input$lowcut, input$upcut), color="red")+geom_quasirandom(width=0.2)
|
|
}
|
|
})
|
|
|
|
output$iterations<-renderUI({
|
|
if (!is.null(dades$taula)){
|
|
sliderInput("iterations", "Iteraciones", min=100, max=2000, step=100, value=100)
|
|
}
|
|
})
|
|
output$lowcut<-renderUI({
|
|
if (!is.null(dades$taula)){
|
|
cut.max<-round(max(dades$taula$Volume, na.rm = T), 2)
|
|
step<-round(max(dades$taula$Volume, na.rm = T)/20, 2)
|
|
sliderInput("lowcut", "Corte inferior", min=0, max=cut.max, step=step, value=0)
|
|
}
|
|
})
|
|
output$upcut<-renderUI({
|
|
if (!is.null(dades$taula)){
|
|
cut.max<-round(max(dades$taula$Volume, na.rm = T), 2)+0.01
|
|
step<-round(max(dades$taula$Volume, na.rm = T)/20, 2)
|
|
sliderInput("upcut", "Corte superior", min=0, max=cut.max, step=step, value=cut.max)
|
|
}
|
|
})
|
|
output$goButton<-renderUI({
|
|
if (!is.null(dades$taula)){
|
|
actionButton("goButton", "Selecciona")
|
|
}
|
|
})
|
|
output$ncages<-renderUI({
|
|
if (is.null(dades$taula)){
|
|
sliderInput("ncages", "Cajas", min=1, max=10, value=1)
|
|
}
|
|
})
|
|
grafic<-eventReactive(input$goButton,{
|
|
df<-dades$taula
|
|
df<-df[!is.na(df$Volume),]
|
|
up_cuttof<-input$upcut
|
|
low_cuttof<-input$lowcut
|
|
print(up_cuttof)
|
|
df<-df[df$Volume < up_cuttof & df$Volume >= low_cuttof,]
|
|
|
|
|
|
# df["Mouse"]<-gsub("[a-zA-Z]", "", df$MouseID)
|
|
print(df$Volume)
|
|
s<-shapiro.test(df$Volume)[[2]]
|
|
|
|
ngroup<-length(dades$groups)
|
|
ind.list<-list()
|
|
pval.list<-list()
|
|
lvn.list<-list()
|
|
test.list<-list()
|
|
for (data in 1:input$iterations){
|
|
interr=T
|
|
while(interr == T){
|
|
ind<-sample(rep(dades$groups, each=ceiling(length(unique(df$`ID animal`))/ngroup)), length(unique(df$`ID animal`)))
|
|
df_temp<-merge(df[,c("ID animal", "ID tumor","Volume")], data.frame("ID animal"=unique(df$`ID animal`), "group"=as.factor(ind),check.names=F))
|
|
if ((nrow(df_temp)/ngroup) %% 2 == 0){
|
|
interr<-any(table(df_temp$group) < floor(nrow(df_temp)/ngroup) | table(df_temp$group) > ceiling(nrow(df_temp)/ngroup))
|
|
}else{
|
|
# interr<-any(table(df_temp$group) < (floor(nrow(df_temp)/ngroup)-1) | table(df_temp$group) > (ceiling(nrow(df_temp)/ngroup)+1))
|
|
interr<-diff(range(table(ind))) > 1
|
|
}
|
|
}
|
|
ind.list[[data]]<-df_temp[,c("ID animal", "ID tumor","group","Volume")]
|
|
lvn.list[data]<-leveneTest(Volume ~ group, data = df_temp[,3:4])[[2]][1]
|
|
if (s < 0.05){
|
|
k<-kruskal.test(df_temp$Volume,df_temp$group)
|
|
test.list[data]<-k[[1]][1]
|
|
pval.list[data]<-k[[3]][1]
|
|
}else{
|
|
res.aov<-aov(Volume~group, data=df_temp)
|
|
pval.list[data]<-summary(res.aov)[[1]][[5]][1]
|
|
test.list[data]<-summary(res.aov)[[1]][[4]][1]
|
|
}
|
|
}
|
|
index<-which(unlist(lvn.list) == min(unlist(lvn.list)[which(unlist(pval.list) %in% sort(unlist(pval.list), decreasing = T)[1:20])]))
|
|
df_def<-merge(df, ind.list[[index]])
|
|
if ("Group" %in% colnames(df_def)){
|
|
df_def<-df_def %>% select(-"Group")
|
|
}
|
|
df_def<-merge(dades$taula %>% select(-Group), df_def[,c("ID animal", "group")] %>% unique, all=T, by="ID animal") %>% select(c(`ID animal`, `ID tumor`, Volume, Cage, Major, Minor, group))
|
|
df_def[!paste0(df_def$`ID animal`, df_def$`ID tumor`) %in% paste0(df$`ID animal`, df$`ID tumor`),"group"]<-NA
|
|
dades$db<-df_def
|
|
|
|
|
|
ggplot(df_def, aes(group, Volume))+
|
|
geom_boxplot(outlier.alpha = F)+
|
|
geom_jitter(width=0.25)+
|
|
geom_point(stat="summary", color="blue", size=3)
|
|
# lims(y=c(0,max(df_def$Volume)+10))
|
|
})
|
|
output$distPlot <- renderPlot({
|
|
observeEvent(dades$taula, {})
|
|
if (!is.null(dades$taula)){
|
|
grafic()
|
|
}
|
|
})
|
|
|
|
output$distTable <- renderTable({
|
|
observeEvent(dades$db, {})
|
|
if (!is.null(dades$db)){
|
|
df<-dades$db
|
|
df_sum<-dcast(df, group~., value.var = "Volume", fun.aggregate = mean, na.rm=T) %>% rename("Mean"=".")
|
|
df_sum["SEM"]<-dcast(df, group~., value.var = "Volume", fun.aggregate = std.error, na.rm=T) %>% pull(`.`)
|
|
df_sum
|
|
}
|
|
})
|
|
|
|
output$downloadData <- downloadHandler(
|
|
|
|
filename = function() {
|
|
paste("invivo", ".xlsx", sep="")
|
|
},
|
|
content = function(file){
|
|
ncages<-input$ncages
|
|
nrat_cage<-5
|
|
id_tumors<-c("L","R")
|
|
timepoint<-c(7,10,13,16,19,22,25)
|
|
|
|
if (!is.null(input$file_sizes)){
|
|
dtemplate<-dades$db %>% select(-Volume)
|
|
dtemplate<-melt(dtemplate, id=c("Cage", "ID animal", "ID tumor", "group"), variable.name = "DPV", value.name = "0") %>% rename("Group"="group")
|
|
dtemplate<-dtemplate[,c("Cage", "ID animal", "ID tumor", "Group", "DPV", "0")] %>% arrange(`ID animal`, `ID tumor`)
|
|
# template<-expand.grid(dades$db$MouseID, timepoint)
|
|
# colnames(template)<-c("MouseID", "Timepoint")
|
|
# template<-template[order(template$Timepoint, template$MouseID),]
|
|
# template<-merge(template, dades$db[c("MouseID", "group")])
|
|
# if (input$measure_sys == "L-W-D"){
|
|
# template<-rbind(template, template, template)
|
|
# template<-template[order(template$Timepoint, template$MouseID),]
|
|
# template["TS"]<-rep(c("TS-Length", "TS-Width", "TS-Deep"), nrow(template)/3)
|
|
# dtemplate<-dcast(template, MouseID+group+TS~Timepoint)
|
|
# dtemplate<-dtemplate[mixedorder(as.character(dtemplate$MouseID)),]
|
|
# }
|
|
# if (input$measure_sys == "Min-Max"){
|
|
# template<-rbind(template, template)
|
|
# template<-template[order(template$Timepoint, template$MouseID),]
|
|
# template["DPV"]<-rep(c("Major", "Minor"), nrow(template)/2)
|
|
# dtemplate<-dcast(template, MouseID+group+DPV~Timepoint)
|
|
# dtemplate<-dtemplate[mixedorder(as.character(dtemplate$MouseID)),]
|
|
# }
|
|
# dtemplate<-dtemplate %>% add_column(.after="MouseID", "ID tumor"=dtemplate$MouseID)%>% rename(`ID animal`=MouseID)
|
|
# dtemplate["ID tumor"]<-gsub("[[:digit:]]","",dtemplate$`ID tumor`)
|
|
# dtemplate["ID animal"]<-gsub("[LR]","",dtemplate$`ID animal`)
|
|
# dtemplate[,5:ncol(dtemplate)]<-""
|
|
}else{
|
|
template<-expand.grid(LETTERS[1:ncages], 1:5, id_tumors, timepoint)[,-2]
|
|
colnames(template)<-c("Cage", "ID tumor", "Timepoint")
|
|
nids<-length(id_tumors)*length(timepoint)
|
|
template[order(template$Cage),"ID animal"]<-rep(1:(nrow(template)/(nids)), each=nids)
|
|
template<-template[order(template$Timepoint, template$Cage, template$`ID animal`),]
|
|
template["Group"]<-""
|
|
if (input$measure_sys == "L-W-D"){
|
|
template<-rbind(template, template, template)
|
|
template<-template[order(template$Timepoint, template$Cage, template$`ID animal`, template$`ID tumor`),]
|
|
template["TS"]<-rep(c("TS-Length", "TS-Width", "TS-Deep"), nrow(template)/3)
|
|
dtemplate<-dcast(template, Cage+`ID animal`+`ID tumor`+Group+TS~Timepoint)
|
|
dtemplate<-dtemplate[order(match(dtemplate$TS, c("TS-Length", "TS-Width", "TS-Deep"))),]
|
|
dtemplate<-dtemplate[mixedorder(dtemplate$`ID tumor`),]
|
|
dtemplate<-dtemplate[mixedorder(dtemplate$`ID animal`),]
|
|
}
|
|
if (input$measure_sys == "Min-Max"){
|
|
template<-rbind(template, template)
|
|
template<-template[order(template$Timepoint, template$Cage, template$`ID animal`, template$`ID tumor`),]
|
|
template["DPV"]<-rep(c("Major", "Minor"), nrow(template)/2)
|
|
dtemplate<-dcast(template, Cage+`ID animal`+`ID tumor`+Group+DPV~Timepoint)
|
|
}
|
|
dtemplate[,6:ncol(dtemplate)]<-""
|
|
}
|
|
write.xlsx(dtemplate,file)
|
|
}
|
|
)
|
|
|
|
# Análisis
|
|
analysis<-reactiveValues()
|
|
analysis$taula<-NULL
|
|
analysis$taula_def<-NULL
|
|
analysis$taula_vol<-NULL
|
|
observe({
|
|
if (!is.null(input$file_analy)){
|
|
analysis$taula<-read.xlsx(input$file_analy$datapath, sheet = 1, check.names = F, sep.names = " ")
|
|
}
|
|
})
|
|
output$cutoffUI<-renderUI({
|
|
if (!is.null(analysis$taula_def)){
|
|
observeEvent(analysis$taula_def, {})
|
|
max_val<-max(analysis$taula_def$Volume, na.rm = T)
|
|
print(max_val)
|
|
sliderInput("cutoff", "Cutoff para Survival", min=0, max=round(max_val), step=round(max_val)/200, value=max_val)
|
|
}
|
|
})
|
|
output$ntable<-renderTable({
|
|
if (!is.null(input$file_analy)){
|
|
observeEvent(analysis$taula, {})
|
|
stattest<-"dunn"
|
|
oneside<-""
|
|
|
|
table<-analysis$taula
|
|
if ("ID.animal" %in% colnames(table)){table<-rename(table, "ID animal"=`ID.animal`)}
|
|
if ("ID" %in% colnames(table)){table<-rename(table, "ID animal"=ID)}
|
|
if ("ID.tumor" %in% colnames(table)){table<-rename(table, "ID tumor"=`ID.tumor`)}
|
|
# table[table$ID.tumor == "R","0"]<-NA
|
|
col_nodays<-c("ID","Code", "Cage","Group", "ID.animal","ID animal", "ID.tumor", "ID tumor", "TS","DPV", "Absorbance")
|
|
if (length(grep(0, colnames(table)[!colnames(table) %in% col_nodays])) == 0){
|
|
table["0"]<-0
|
|
}
|
|
table<-melt(table, id=colnames(table)[colnames(table) %in% col_nodays], variable.name = "Timepoint")
|
|
table$Timepoint<-gsub("[A-Za-z ]","",table$Timepoint)
|
|
print(table)
|
|
if ("DPV" %in% colnames(table)){
|
|
table<-dcast(table, Cage+`ID animal`+`ID tumor`+Group+Timepoint~DPV, value.var = "value")
|
|
table$Major<-table$Major
|
|
table$Minor<-table$Minor
|
|
table["Volume"]<-((table$Major*table$Minor*table$Minor)*(pi/6))
|
|
}
|
|
if ("TS" %in% colnames(table)){
|
|
table<-dcast(table, Cage+`ID animal`+`ID tumor`+Group+Timepoint~TS, value.var = "value")
|
|
table["Volume"]<-table$`TS-Deep`*table$`TS-Length`*table$`TS-Width`*pi/6
|
|
}
|
|
if (!"Volume" %in% colnames(table)){table<-rename(table, "Volume"=value)}
|
|
table<-table %>% filter(!is.na(Group))
|
|
table$Timepoint<-factor(table$Timepoint, levels=mixedsort(as.numeric(as.character(unique(table$Timepoint)))))
|
|
analysis$taula_def<-table
|
|
analysis$taula_vol<-dcast(table, Cage+`ID animal`+`ID tumor`~Timepoint,value.var = "Volume")
|
|
table_plot<-dcast(dcast(table %>% filter(!is.na(Volume)), `ID animal`+Group+Timepoint~., value.var = "Volume", fun.aggregate = mean), Group~Timepoint)
|
|
table_plot
|
|
}
|
|
})
|
|
output$cin_group<-renderPlot({
|
|
if (!is.null(input$file_analy) & !is.null(analysis$taula_def)){
|
|
observeEvent(analysis$taula_def, {})
|
|
table<-analysis$taula_def
|
|
if (input$vacc == "Sí"){
|
|
ggplot(table, aes(as.numeric(as.character(Timepoint)), Volume, color=Group, group=Group))+
|
|
geom_errorbar(stat="summary", width=0.05)+
|
|
geom_line(stat="summary")+
|
|
geom_point(stat="summary")+
|
|
facet_grid(factor(`ID tumor`, labels = c("Vaccination", "Rechallenge"))~., scale="free_y")+
|
|
labs(x="Days after tumor challenge")+
|
|
scale_y_continuous(expand = expansion(mult = c(0,0.05)))+
|
|
scale_x_continuous(expand = expansion(mult = c(0,0.05)), limits = c(0, (round(max(as.numeric(as.character(table$Timepoint))) / 5)+1)*5))+
|
|
theme_bw()
|
|
}else{
|
|
ggplot(table, aes(Timepoint, Volume, color=Group, group=Group))+
|
|
geom_errorbar(stat="summary",width=0.05)+
|
|
geom_line(stat="summary")+
|
|
geom_point(stat="summary")+
|
|
labs(x="Days after tumor challenge")+
|
|
scale_y_continuous(expand = expansion(mult = c(0,0.05)))+
|
|
theme_bw()+
|
|
theme(axis.text.x=element_text(angle=45, hjust=1))
|
|
}
|
|
|
|
}
|
|
})
|
|
output$cin_indiv<-renderPlot({
|
|
if (!is.null(input$file_analy) & !is.null(analysis$taula_def)){
|
|
observeEvent(analysis$taula_def, {})
|
|
table<-analysis$taula_def
|
|
print(table , )
|
|
if (input$vacc == "Sí"){
|
|
ggplot(table, aes(as.numeric(as.character(Timepoint)), Volume, color=Group, group=`ID animal`))+
|
|
# geom_errorbar(stat="summary", width=0.05)+
|
|
geom_line()+
|
|
geom_point()+
|
|
scale_y_continuous(expand = expansion(mult = c(0,0.05)))+
|
|
scale_x_continuous(expand = expansion(mult = c(0,0.05)), limits = c(0, (round(max(as.numeric(as.character(table$Timepoint))) / 5)+1)*5))+
|
|
facet_grid(factor(`ID tumor`, labels = c("Vaccination", "Rechallenge"))~Group, scale="free_y")+
|
|
labs(x="Days after tumor challenge")+
|
|
theme_bw()
|
|
}else{
|
|
ggplot(table, aes(Timepoint, Volume, color=Group, group=`ID animal`))+
|
|
# geom_errorbar(stat="summary", width=0.05)+
|
|
geom_line()+
|
|
geom_point()+
|
|
scale_y_continuous(expand = expansion(mult = c(0,0.05)))+
|
|
# scale_x_continuous(expand = expansion(mult = c(0,0.05)), limits = c(0, (round(max(as.numeric(as.character(table$Timepoint))) / 5)+1)*5))+
|
|
facet_wrap(.~Group)+
|
|
labs(x="Days after tumor challenge")+
|
|
theme_bw()+
|
|
theme(axis.text.x=element_text(angle=45, hjust=1))
|
|
}
|
|
}
|
|
})
|
|
|
|
output$survival<-renderPlot({
|
|
if (!is.null(input$file_analy) & !is.null(analysis$taula_def)){
|
|
observeEvent(analysis$taula_def, {})
|
|
table<-analysis$taula_def
|
|
if (input$vacc == "Sí"){
|
|
g<-list()
|
|
for (side in c("L","R")){
|
|
tableR<-filter(table, `ID tumor` == side) %>% filter(!is.na(Volume))
|
|
endtime<-dcast(tableR %>% filter(Volume < input$cutoff), Cage+`ID animal`+`ID tumor`+Group~., value.var = "Timepoint", fun.aggregate = function(x){max(as.numeric(as.character(x)))}) %>% rename("end"=".")
|
|
endtime["Dead"]<-dcast(tableR, Cage+`ID animal`+`ID tumor`+Group~., value.var = "Volume", fun.aggregate = function(x){max(as.numeric(as.character(x)))}) %>% pull(".") > input$cutoff
|
|
table_tumor<<-endtime
|
|
|
|
g[side]<-ggsurvplot(survfit(Surv(table_tumor$end, table_tumor$Dead) ~ table_tumor$Group, data=table_tumor),
|
|
pval = T, pval.method = T,
|
|
title = side,
|
|
# legend.labs = paste(c("< median", ">= median"), "MICA"),
|
|
ggtheme=theme_classic(base_size=15)
|
|
# conf.int = TRUE,
|
|
# Add risk table
|
|
# risk.table = TRUE,
|
|
# tables.height = 0.2,
|
|
# tables.theme = theme_cleantable(),
|
|
|
|
# Color palettes. Use custom color: c("#E7B800", "#2E9FDF"),
|
|
# or brewer color (e.g.: "Dark2"), or ggsci color (e.g.: "jco")
|
|
# palette = c("#E7B800", "#2E9FDF")
|
|
)
|
|
}
|
|
do.call(grid.arrange, g)
|
|
|
|
}else{
|
|
tableR<-table %>% filter(!is.na(Volume))
|
|
endtime<-dcast(tableR %>% filter(Volume < input$cutoff), `ID animal`+Group~., value.var = "Timepoint", fun.aggregate = function(x){max(as.numeric(as.character(x)))}) %>% rename("end"=".")
|
|
endtime["Dead"]<-dcast(tableR, `ID animal`+Group~., value.var = "Volume", fun.aggregate = function(x){max(as.numeric(as.character(x)))}) %>% pull(".") > input$cutoff
|
|
table_tumor<<-endtime
|
|
|
|
g<-ggsurvplot(survfit(Surv(table_tumor$end, table_tumor$Dead) ~ table_tumor$Group, data=table_tumor),
|
|
pval = T, pval.method = T,
|
|
# legend.labs = paste(c("< median", ">= median"), "MICA"),
|
|
ggtheme=theme_classic(base_size=15)
|
|
# palette = c("#E7B800", "#2E9FDF")
|
|
)
|
|
g
|
|
}
|
|
}
|
|
})
|
|
|
|
output$stats<-renderPrint({
|
|
stattest<-"dunn"
|
|
oneside<-""
|
|
if (!is.null(input$file_analy) & !is.null(analysis$taula_def)){
|
|
observeEvent(analysis$taula_def, {})
|
|
table<-analysis$taula_def
|
|
if (input$vacc == "No"){
|
|
table<-filter(table, !is.na(Volume))
|
|
summary(aov(Volume~Group+Timepoint+Error(`ID animal`), data=table))
|
|
}else{
|
|
for (side in c("L","R")){
|
|
tableR<-filter(table, `ID tumor` == side) %>% filter(!is.na(Volume))
|
|
if (length(unique(tableR$Volume)) > 1 & length(unique(tableR$Timepoint)) > 1){
|
|
print(paste0("Side: ",side))
|
|
# print(summary(aov(Volume~Group+Timepoint+Error(paste0(ID animal,Cage)), data=tableR)))
|
|
print(summary(aov(Volume~Group+Timepoint+Error(`ID animal`), data=tableR)))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
})
|
|
output$tab_stats<-renderTable({
|
|
stattest<-"dunn"
|
|
oneside<-""
|
|
if (!is.null(input$file_analy) & !is.null(analysis$taula_def)){
|
|
table<-analysis$taula_def
|
|
table_stats<-list()
|
|
if (input$vacc == "No"){
|
|
table<-table%>%filter(!is.na(Volume))
|
|
if (length(unique(table$Volume)) > 1){
|
|
table_stats<-multi_stats(table, "Volume", "Timepoint", "Group", stat.test=stattest)
|
|
}
|
|
table_kw<-as.data.frame(matrix(nrow=0, ncol=2))
|
|
for (point in unique(table$Timepoint)){
|
|
len_group<-length(unique(table %>% filter(Timepoint == point) %>% pull(Group)))
|
|
if (len_group > 1){
|
|
table_kw<-rbind(table_kw, data.frame(point,kruskal.test(table %>% filter(Timepoint == point) %>% pull(Volume), table %>% filter(Timepoint == point) %>% pull(Group))[3][[1]]))
|
|
}
|
|
}
|
|
colnames(table_kw)<-c("Timepoint", "KW-p.val")
|
|
table_stats<-merge(table_stats, table_kw)
|
|
|
|
}else{
|
|
for (side in c("L","R")){
|
|
tableR<-filter(table, `ID tumor` == side) %>% filter(!is.na(Volume))
|
|
if (length(unique(tableR$Volume)) > 1){
|
|
table_stats[[side]]<-multi_stats(tableR, "Volume", "Timepoint", "Group", stat.test=stattest)
|
|
}
|
|
table_kw<-as.data.frame(matrix(nrow=0, ncol=2))
|
|
for (point in unique(tableR$Timepoint)){
|
|
len_group<-length(unique(tableR %>% filter(Timepoint == point) %>% pull(Group)))
|
|
if (len_group > 1){
|
|
table_kw<-rbind(table_kw, data.frame(point,kruskal.test(tableR %>% filter(Timepoint == point) %>% pull(Volume), tableR %>% filter(Timepoint == point) %>% pull(Group))[3][[1]]))
|
|
}
|
|
}
|
|
colnames(table_kw)<-c("Timepoint", "KW-p.val")
|
|
table_stats[[side]]<-merge(table_stats[[side]], table_kw)
|
|
}
|
|
}
|
|
table_stats_def<-bind_rows(table_stats, .id = "ID tumor")
|
|
if (input$filter_stats == T){
|
|
table_stats_def %>% filter(p.adj < 0.05)
|
|
}else{
|
|
table_stats_def
|
|
}
|
|
}
|
|
})
|
|
|
|
output$downloadVolume <- downloadHandler(
|
|
|
|
filename = function() {
|
|
paste("invivo-vols", ".xlsx", sep="")
|
|
},
|
|
content = function(file){
|
|
dtemplate<-analysis$taula_vol
|
|
write.xlsx(dtemplate,file)
|
|
}
|
|
)
|
|
|
|
##Exportar
|
|
output$expPlotUI<- renderUI({
|
|
observeEvent(analysis$taula_def, {})
|
|
if (!is.null(input$file_analy) & !is.null(analysis$taula_def)){
|
|
plotOutput("expPlot", width=paste0(input$width/10,"px"), height = paste0(input$height/10, "px"))
|
|
}
|
|
})
|
|
|
|
output$expPlot <- renderPlot({
|
|
observeEvent(analysis$taula_def, {})
|
|
if (!is.null(input$file_analy) & !is.null(analysis$taula_def)){
|
|
table<-analysis$taula_def
|
|
|
|
if (input$fig_id %in% c("Cinética Grupo", "Cinética Individual")){
|
|
if (input$fig_id == "Cinética Grupo"){
|
|
if (input$vacc == "Sí"){
|
|
g<-ggplot(table, aes(as.numeric(as.character(Timepoint)), Volume, color=Group, group=Group))+
|
|
scale_x_continuous(expand = expansion(mult = c(0,0.05)), limits = c(0, (round(max(as.numeric(as.character(table$Timepoint))) / 5)+1)*5))+
|
|
facet_grid(factor(`ID tumor`, labels = c("Vaccination", "Rechallenge"))~., scale="free_y")+
|
|
theme_bw()
|
|
}else{
|
|
g<-ggplot(table, aes(Timepoint, Volume, color=Group, group=Group))+
|
|
theme_bw()
|
|
}
|
|
}
|
|
if (input$fig_id == "Cinética Individual"){
|
|
if (input$vacc == "Sí"){
|
|
g<-ggplot(table, aes(as.numeric(as.character(Timepoint)), Volume, color=Group, group=`ID animal`))+
|
|
scale_x_continuous(expand = expansion(mult = c(0,0.05)), limits = c(0, (round(max(as.numeric(as.character(table$Timepoint))) / 5)+1)*5))+
|
|
facet_grid(factor(`ID tumor`, labels = c("Vaccination", "Rechallenge"))~Group, scale="free_y")+
|
|
theme_bw()
|
|
}else{
|
|
g<-ggplot(table, aes(Timepoint, Volume, color=Group, group=`ID animal`))+
|
|
facet_wrap(.~Group)+
|
|
theme_bw()
|
|
}
|
|
}
|
|
|
|
g<-g+geom_errorbar(stat="summary", width=input$`errorbar-width`)+
|
|
geom_line(stat="summary")+
|
|
geom_point(stat="summary", size=input$`point-size`)+
|
|
labs(x="Days after tumor challenge")+
|
|
scale_y_continuous(expand = expansion(mult = c(0,0.05)))
|
|
|
|
if (input$theme == "BW"){
|
|
g<-g+theme_bw(base_size = input$`font-size`)
|
|
}
|
|
if (input$theme == "Classic"){
|
|
g<-g+theme_classic(base_size = input$`font-size`)
|
|
}
|
|
if (input$theme == "Default"){
|
|
g<-g+theme_gray(base_size = input$`font-size`)
|
|
}
|
|
# g<-g+theme(axis.text.x=element_text(angle=45, hjust=1))
|
|
if (input$legend == F){
|
|
g<-g+guides(color=FALSE, fill=FALSE)
|
|
}
|
|
if (input$colors != ""){
|
|
v_col<-strsplit(input$colors, ",")[[1]]
|
|
g<-g+scale_color_manual(values=v_col)+
|
|
scale_fill_manual(values=v_col)
|
|
}
|
|
if (input$logscale == T){
|
|
g<-g+scale_y_log10()
|
|
}
|
|
}else{
|
|
gg_color_hue <- function(n, l=65) {
|
|
hues <- seq(15, 375, length=n+1)
|
|
hcl(h=hues, l=l, c=100)[1:n]
|
|
}
|
|
if (input$vacc == "Sí"){
|
|
g<-list()
|
|
count<-1
|
|
for (side in c("L","R")){
|
|
tableR<-filter(table, `ID tumor` == side) %>% filter(!is.na(Volume))
|
|
endtime<-dcast(tableR %>% filter(Volume < input$cutoff), Cage+`ID animal`+`ID tumor`+Group~., value.var = "Timepoint", fun.aggregate = function(x){max(as.numeric(as.character(x)))}) %>% rename("end"=".")
|
|
endtime["Dead"]<-dcast(tableR, Cage+`ID animal`+`ID tumor`+Group~., value.var = "Volume", fun.aggregate = function(x){max(as.numeric(as.character(x)))}) %>% pull(".") > input$cutoff
|
|
table_tumor<-endtime
|
|
if (input$colors != ""){
|
|
col<-input$colors
|
|
}else{
|
|
col<-gg_color_hue(length(unique(endtime$Group)))
|
|
}
|
|
g[[count]]<-ggsurvplot(survfit(Surv(table_tumor$end, table_tumor$Dead) ~ table_tumor$Group, data=table_tumor),
|
|
pval = T, pval.method = T,
|
|
title = side,
|
|
# legend.labs = paste(c("< median", ">= median"), "MICA"),
|
|
ggtheme=theme_classic(base_size=input$`font-size`),
|
|
palette = col
|
|
)
|
|
count<-count+1
|
|
}
|
|
g_surv_vacc<-g
|
|
|
|
}else{
|
|
tableR<-table %>% filter(!is.na(Volume))
|
|
endtime<-dcast(tableR %>% filter(Volume < input$cutoff), `ID animal`+Group~., value.var = "Timepoint", fun.aggregate = function(x){max(as.numeric(as.character(x)))}) %>% rename("end"=".")
|
|
endtime["Dead"]<-dcast(tableR, `ID animal`+Group~., value.var = "Volume", fun.aggregate = function(x){max(as.numeric(as.character(x)))}) %>% pull(".") > input$cutoff
|
|
table_tumor<-endtime
|
|
if (input$colors != ""){
|
|
col<-input$colors
|
|
}else{
|
|
col<-gg_color_hue(length(unique(table_tumor$Group)))
|
|
}
|
|
g<-ggsurvplot(survfit(Surv(table_tumor$end, table_tumor$Dead) ~ table_tumor$Group, data=table_tumor),
|
|
pval = T, pval.method = T,
|
|
# legend.labs = paste(c("< median", ">= median"), "MICA"),
|
|
ggtheme=theme_classic(base_size=input$`font-size`),
|
|
palette = col
|
|
)
|
|
}
|
|
}
|
|
|
|
if (input$vacc == "Sí" & input$fig_id == "Survival"){
|
|
dades$plot<<-g_surv_vacc
|
|
arrange_ggsurvplots(g, nrow=2, ncol=1)
|
|
}else{
|
|
dades$plot<<-g
|
|
g
|
|
}
|
|
}
|
|
}, res=72)
|
|
|
|
output$downloadPicture <- downloadHandler(
|
|
filename = function() {
|
|
paste("Figura", ".zip", sep="")
|
|
},
|
|
content = function(file){
|
|
# tempReport <- file.path(tempdir(), "elispots.Rmd")
|
|
# file.copy("elispots.Rmd", tempReport, overwrite = TRUE)
|
|
png("invivo.png", width = input$width, height=input$height, units = "px", res=720)
|
|
if (input$fig_id == "Survival"){
|
|
if (input$vacc == "Sí"){
|
|
arrange_ggsurvplots(dades$plot, nrow=2, ncol=1)
|
|
}else{
|
|
arrange_ggsurvplots(list(dades$plot), ncol=1)
|
|
}
|
|
}else{plot(dades$plot)}
|
|
dev.off()
|
|
if (input$fig_id == "Survival"){
|
|
if (input$vacc == "Sí"){
|
|
invivo.plot<-arrange_ggsurvplots(dades$plot, nrow=2, ncol=1)
|
|
}else{
|
|
invivo.plot<-arrange_ggsurvplots(list(dades$plot), ncol=1)
|
|
}
|
|
}else{invivo.plot<-dades$plot}
|
|
save(invivo.plot, file="invivoplot.RObject")
|
|
zip(file,
|
|
c("invivo.png", "invivoplot.RObject")
|
|
)
|
|
})
|
|
|
|
|
|
}
|
|
|
|
# Run the application
|
|
shinyApp(ui = ui, server = server)
|