Browse Source

Add 'CALCULATE SPOTS DIFF.R'

main
marcelcosta 3 years ago
parent
commit
d6c320de95
1 changed files with 151 additions and 0 deletions
  1. +151
    -0
      CALCULATE SPOTS DIFF.R

+ 151
- 0
CALCULATE SPOTS DIFF.R

@ -0,0 +1,151 @@
impose.mono <- function(x, dir){
# Function to impose monotonicity on elements of the vector, x
# dir="incr" gives increasing monotonicity
# dir="decr" gives decreasing monotonicity
if(dir=="decr"){ x <- rev(x) }
for(i in 2:length(x)){
idx <- is.na(x[(i-1):i])
if (sum(idx)==1){
x[i] <- x[(i-1):i][!idx]
} else {
x[i] <- max(x[i-1],x[i])
}
}
if(dir=="decr"){ x <- rev(x) }
x
}
###
perm <- function(dat, nExp, nCtl){
N <- nExp+nCtl # total number of exp and neg ctl wells
k <- NROW(dat) # number of peptide pools
B <- choose(N,nExp) # number of perms needed for complete enumeration
if(B < 20) stop("Too few replicates to use this method (B < 20).")
mu.e <- rowMeans(dat[,1:nExp], na.rm=TRUE) # vector of peptide pool means
mu.c <- rowMeans(dat[,nExp+(1:nCtl)], na.rm=TRUE) # vector of neg ctl means
# test statistic for observed data
t <- mu.e-mu.c
t.sort <- sort(t)
index <- order(t)
# samp matrix contains all possible permutations of columns of dat matrix:
samp <- expand.grid(rep(list(0:1),N))
samp <- samp[apply(samp,1,sum)==nExp,]
samp <- as.matrix(samp)
tPerm <- matrix(0,nrow=k,ncol=B)
# calculate test statistics for each perm sample in samp:
for(i in 1:B){
perm.dat <- dat[,order(samp[i,])]
mu.exp <- rowMeans(perm.dat[,(1:nExp)+nCtl], na.rm=TRUE)
mu.ctl <- rowMeans(perm.dat[,1:nCtl], na.rm=TRUE)
tPerm[,i] <- mu.exp-mu.ctl
}
# order rows of tPerm to correspond with sorted test statistics in t.sort:
if(k==1){ tPerm.mono <- tPerm.sort <- tPerm }
if(k>1){
tPerm.sort <- tPerm[index,]
tPerm.mono <- apply(tPerm.sort,2,impose.mono,dir="incr")
}
# calculate adjusted p-values:
tpvalue <- apply(tPerm.mono>=t.sort, 1, mean, na.rm=TRUE)
# enforce monotonicity on adjusted p-values in tpvalue:
if(k>1){ tpvalue <- impose.mono(tpvalue, dir="decr") }
list(tstat=t, tadjp=tpvalue[order(index)])
}
###
elsdfreq <- function(data, nExp, nCtl, nameCtl, alpha=0.05){
data <- as.data.frame(data)
data <- data[order(data[,1],data[,2]),]
ncdat <- data[data[,3]==nameCtl,]
dat <- data.frame(matrix(NA,nrow=NROW(data[data[,3]!=nameCtl,]),ncol=3+nExp+nCtl))
dat[,1:(3+nExp)] <- data[data[,3]!=nameCtl,]
names(dat) <- c(names(data)[1:(3+nExp)],paste("c",1:nCtl,sep=""))
for(id in unique(data[,1])){
for(day in unique(data[,2])){
dat[dat[,1]==id & dat[,2]==day,3+nExp+(1:nCtl)] <- ncdat[ncdat[,1]==id & ncdat[,2]==day,-(1:3)]
}}
### dat = a data.frame with ptid, day, antigen in cols 1 to 3,
### peptide replicates in col4:(3+nExp), control replicates in
### col(4+nExp):col(3+nExp+nCtl)
### Same control replicates are repeated for each peptide per unique ptid
### nExp = no. of experimental wells per peptide
### nCtl = no. of negative control wells
### Use alpha=0.05 as default
ind <- unique(dat[,1:2])
adjp <- teststat <- pos.call <- NULL
# perform permutation test on each unique ptid*day combination with
# multiplicity adjustment for the number of peptide pools
for(i in 1:NROW(ind)){
temp.dat <- as.matrix(dat[dat[,1]==ind[i,1] & dat[,2]==ind[i,2],-(1:3)])
temp.id <- ind[i,1]
temp.day <- ind[i,2]
temp.pep <- dat[dat[,1]==ind[i,1] & dat[,2]==ind[i,2],3]
if (length(temp.pep)==1) temp.dat <- t(temp.dat)
temp.adjp <- temp.teststat <- rep(NA, NROW(temp.dat))
nas <- is.na(temp.dat)
nCtlc <- nCtl - sum(nas[1,nExp+(1:nCtl)]) # observed number of neg ctl reps
nExpC <- nExp - apply(nas[,1:nExp],1,sum) # observed numbers of exp reps
idx <- (nExpC>=3 & nCtlc>=3) | (nExpC>=2 & nCtlc>=4)
if (sum(idx)>0){
temp.dat <- as.matrix(temp.dat[idx,])
if (sum(idx)==1 & length(idx)>1){
temp.dat <- t(temp.dat)
out<-perm(dat=rbind(temp.dat,temp.dat), nExp=nExp, nCtl=nCtl)
out<-lapply(out, function(x) x[1])
}else{
out <- perm(dat=temp.dat, nExp=nExp, nCtl=nCtl)
}
temp.teststat[idx] <- out$tstat
temp.adjp[idx] <- out$tadjp
}
teststat <- c(teststat, temp.teststat)
adjp <- c(adjp, temp.adjp)
if (nCtlc<nCtl) warning(paste("ptid", temp.id, "has", nCtl-nCtlc, "missing value(s) for negative controls", "on day", temp.day))
if (min(nExpC)<nExp){
for (j in 1:sum(nExpC<nExp)){
warning(paste("ptid", temp.id, "has", nExp-nExpC[nExpC<nExp][j], "missing value(s) for", temp.pep[nExpC<nExp][j], "on day", temp.day))
}
}
}
pos.call <- ifelse(adjp <= alpha,1,0)
output <- data.frame(cbind(dat,round(teststat,5),round(adjp,5),pos.call))
colnames(output)[(ncol(dat)+1):(ncol(dat)+3)] <- c("t-stat","adjp","pos")
output
}
#### Read (excel or csv) and create "data"
# library(readxl)
# data<-read_xlsx("C:/Users/y2955361j/Downloads/example.xlsx")
#
# ## elsdfreq <- function(data, nExp, nCtl, nameCtl, alpha=0.05
# ### nExp = no. of experimental wells per peptide (usually 3)
# ### nCtl = no. of negative control wells (usually 6)
# ### Use alpha=0.05 as default
#
# results<-elsdfreq (data, 3, 6, 'control', alpha=0.05)
# View(results)

Loading…
Cancel
Save