|
|
- ---
- title: "CitFuns"
- output: rmarkdown::html_vignette
- description: |
- How to use CitFuns functions.
- vignette: >
- %\VignetteIndexEntry{CitFuns Package}
- %\VignetteEngine{knitr::rmarkdown}
- %\VignetteEncoding{UTF-8}
- ---
-
-
- ```{r setup, include=FALSE}
- knitr::opts_chunk$set(echo = TRUE, message = F, warning = F, error = F)
- ```
-
- ## Installation
-
- In order to install CitFuns package from Git reppository, you must install `devtools` package:
-
- ```{r, eval=F}
- install.packages('devtools')
- ```
-
- In order to install it, you will have to install (if not already done) [Rtools](https://cran.r-project.org/bin/windows/Rtools/rtools40.html).
-
- You will also need [Git](https://git-scm.com/downloads) installed in your computer.
-
- Now we are ready to install CitFuns package:
- ```{r, eval=F}
- devtools::install_git("https://git.ratg.cat/marcelcosta/CitFuns.git", build_vignettes = T)
- ```
-
- ## Update
-
- Any time you want to update the package, you must *reinstall* it:
-
- ```{r, eval=F}
- detach("package:CitFuns", unload = TRUE) # Only required if you have loaded the package in this session.
- devtools::install_git("https://git.ratg.cat/marcelcosta/CitFuns.git")
- ```
-
- ## ggheatmap
-
- **ggheatmap** generates ggplot heatmaps easily.
-
- We start by loading required packages, including *CitFuns*
-
- ```{r}
- library(tidyverse)
- library(CitFuns)
- ```
-
- Now we will create an example dataframe:
-
- ```{r}
- df<-data.frame("pats"=paste0("PAT", 1:20), "CytA"=rnorm(20,5), "CytB"=rnorm(20,5),
- "CytC"=c(rnorm(5,10),rnorm(5,5),rnorm(5,10),rnorm(5,5)),"CytD"=rnorm(20,5),
- "CytE"=c(rnorm(5,10),rnorm(5,5),rnorm(5,10),rnorm(5,5)),"CytF"=rnorm(20,5),
- "CytG"=c(rnorm(5,10),rnorm(5,5),rnorm(5,10),rnorm(5,5)))
-
- df<-gather(df, Cyt, Value,-pats)
- head(df)
- ```
-
- Usually, this package works with the dataframes in **Long** format, as it is intended in ggplot workflow.
-
- And now we will generate the heatmap.
-
- ```{r, fig.width=8}
- ggheatmap(df)
- ```
-
- As we can observe, X and Y axis are sorted by cluster detection (using *hclust*).
-
- *ggheatmap* groups the results if more there is more than one observation for each X-Y coordinate. By default, it calculates the mean, but the median can also be used instead. To show this, we will create another variable, "Met", and we plot Cytokine expression *versus* Met status.
-
- ```{r, fig.width=8}
- clinics<-data.frame("pats"=df$pats %>% unique, "Met"=rep(c("0","1"), 10))
- df<-merge(df, clinics)
-
- ggheatmap(df, x="Cyt",y="Met", grouping = "median")
- ```
-
- By default, *other variables not used are eliminated* during the grouping process. However, if you want to further use them (for faceting, for example), you can use the *exclude_group* parameter to keep them in the data.frame.
-
- ```{r, fig.width=8}
- ggheatmap(df, exclude_group = "Met")+facet_grid(.~Met, scales = "free")
- ```
-
- Finally, you can scale the heatmap either by rows or by columns:
-
- ```{r, fig.width=8}
- ggheatmap(df, scale="rows")
- ```
-
- It is worth noticing that ggheatmap outputs a ggplot object, so you can further modify it as you are used to:
-
- ```{r, fig.width=8, fig.height=5}
- ggheatmap(df)+
- scale_fill_gradient(low = "black", high = "yellow")+
- scale_y_discrete(position = "right")+
- theme(legend.position = "bottom")
- ```
-
- ## ggcorrplot
-
- ggcorrplot generates a correlation matrix. Using the same example dataframe, you have to specify which variable and value columns will be used to test correlation.
-
- ```{r, fig.width=5, fig.height=4}
- ggcorrplot(df, var = "Cyt", value = "Value")
- ```
-
- You can specify a color for the tile lines, transparent by default:
-
- ```{r, fig.width=5, fig.height=4}
- ggcorrplot(df, var = "Cyt", value = "Value", color = "white")
- ```
-
- By default, ggcorrplot converts the p-value into *star* significance equivalence. You can show the pvalue or nothing ("none").
-
- ```{r, fig.width=5, fig.height=4}
- ggcorrplot(df, var = "Cyt", value = "Value", color = "white", stat="pval")
- ```
-
- ggcorrplot uses "pearson" by default to obtain a correlation coeficient, although "spearman" is also available.
-
- ```{r, fig.width=5, fig.height=4}
- ggcorrplot(df, var = "Cyt", value = "Value", color = "white", stat="pval", method="spearman")
- ```
-
-
- Finally, you can show only the upper part or the lower part of the specular matrix.
-
- ```{r, fig.width=5, fig.height=4}
- ggcorrplot(df, var = "Cyt", value = "Value", color = "black", tri="lower")
- ```
|