Browse Source

first commit

main
Marcel Costa 9 months ago
commit
c12d2ea726
3 changed files with 371 additions and 0 deletions
  1. +104
    -0
      Analysis.R
  2. +0
    -0
      README.md
  3. +267
    -0
      functionsCyto.R

+ 104
- 0
Analysis.R

@ -0,0 +1,104 @@
library(tidyverse)
library(flowWorkspace)
library(Biobase)
library(flowGate)
source("functionsCyto.R")
files<-list.files("Files", pattern = ".LMD", full.names = T)
LMD2FCS(files)
fs<-read.ncdfFlowSet(files=list.files("Files",".fcs", full.names = T), readonly = F)
gs <- GatingSet(fs)
comp<-as.matrix(read.csv("CompMatrix.csv", check.names = F, row.names = 1))
gs<-compensate(gs, comp)
trans_params<-transform_gs(gs)
saveRDS(trans_params, "trans_params.rds")
trans_params<-readRDS("trans_params.rds")
trans_apply(gs, trans_params = trans_params)
colnames(gs)[c(4,6,11)]<-c("CD16","CD56","CD107a")
sampleNames(gs)<-gsub("\\s[0-9]*.fcs","",sampleNames(gs))
sampleNames(gs)<-gsub(".*\\s","",sampleNames(gs))
pData(gs)$name<-rownames(pData(gs))
gates<-list()
gs_gate_interactive(gs,
filterId = "Leukocytes",
dims = list("FS-A", "SS-A"))
gates[["Leukocytes"]]<-gs_pop_get_gate(gs, "Leukocytes")
gs_gate_interactive(gs,
subset = "Leukocytes",
filterId = "NKdim",
dims = list("CD16", "CD56"))
gates[["NKdim"]]<-gs_pop_get_gate(gs, "NKdim")
gs_gate_interactive(gs[["NKs-K562"]],
subset = "NKdim",
filterId = "CD107a+",
dims = list("CD107a", "CD56"), overlayGates = "CD107a+")
gates[["CD107a+"]]<-gs_pop_get_gate(gs, "CD107a+")
gates<-gates_save(gs, file = "gates.rds")
gates<-readRDS("gates.rds")
gs<-gates_apply(gs, gates)
autoplot(gs, "CD107a+")
ggcyto_trans(gs, "CD107a", "CD56", subset="NKdim")
autoplot(gs[[5]], bins=0)
ggcyto_trans_all(gs, index = 5, ncol=1)
stats<-gs_pop_get_stats(gs, nodes="CD107a+", type="perc")
ggpubr::ggarrange(
ggcyto_trans_all(gs, nrow=1),
ggcyto::as.ggplot(ggcyto_trans(gs, "CD107a", "CD56", subset="NKdim")+
facet_grid(.~name)),
ggplot(stats, aes(sample, percent))+
geom_bar(stat="identity", color="black", fill="grey70"),
ncol=1)
ggsave("Analysis.jpg")
save_gs(gs, "gs_analysis")
gs<-load_gs("gs_analysis/")
## For a new experiment with same settings
files<-list.files("Files", pattern = ".LMD", full.names = T)
LMD2FCS(files)
fs<-read.ncdfFlowSet(files=list.files("Files",".fcs", full.names = T), readonly = F)
gs <- GatingSet(fs)
comp<-as.matrix(read.csv("CompMatrix.csv", check.names = F, row.names = 1))
gs<-compensate(gs, comp)
trans_params<-readRDS("trans_params.rds")
trans_apply(gs, trans_params = trans_params)
colnames(gs)[c(4,6,11)]<-c("CD16","CD56","CD107a")
sampleNames(gs)<-gsub("\\s[0-9]*.fcs","",sampleNames(gs))
sampleNames(gs)<-gsub(".*\\s","",sampleNames(gs))
pData(gs)$name<-rownames(pData(gs))
gates<-readRDS("gates.rds")
gs<-gates_apply(gs, gates) #if not the same gates, apply a general with "exact=F"
stats<-gs_pop_get_stats(gs, nodes="CD107a+", type="perc")
ggpubr::ggarrange(
ggcyto_trans_all(gs, nrow=1),
ggcyto::as.ggplot(ggcyto_trans(gs, "CD107a", "CD56", subset="NKdim")+
facet_grid(.~name)),
ggplot(stats, aes(sample, percent))+
geom_bar(stat="identity", color="black", fill="grey70"),
ncol=1)
ggsave("Analysis.jpg")
save_gs(gs, "gs_analysis")
gs<-load_gs("gs_analysis/")

+ 0
- 0
README.md


+ 267
- 0
functionsCyto.R

@ -0,0 +1,267 @@
gs_export_pop<-function(gs, pop, trim.channels=T){
pop.dt<-c()
# Initializes the progress bar
pb <- txtProgressBar(min = 0, # Minimum value of the progress bar
max = length(gs), # Maximum value of the progress bar
style = 3, # Progress bar style (also available style = 1 and style = 2)
width = 50, # Progress bar width. Defaults to getOption("width")
char = "=") # Character used to create the bar
for (i in 1:length(gs)){
samp<-sampleNames(gs)[i]
data<-as.data.frame(flowCore::exprs(gh_pop_get_data(gs[[samp]], pop))) %>% add_column("Sample"=samp)
if (length(pop.dt) > 0){
pop.dt<-rbind(pop.dt, data)
}else{
pop.dt<-data
}
setTxtProgressBar(pb, i)
}
close(pb)
if (trim.channels){
colnames(pop.dt)<-gsub(" [A-Za-z0-9.-]*","",colnames(pop.dt))
pop.dt<-pop.dt[colnames(pop.dt)[!colnames(pop.dt) %in% c("FSC-H","SSC-H","FSC-Width","FVS")]]
}
return(pop.dt)
}
get_cut<-function(x, markers, ref, thr){
x<-x %>%
dplyr::filter(Condition == ref) %>%
gather(Marker, Value, all_of(markers)) %>%
group_by(`ID.SAR-EM`, Marker, Tiempo) %>%
summarise(cut=predict_cut(Value, thr))
}
get_positive<-function(x, cut=NULL, markers, ref, thr){
if (is.null(cut)){
cut<-get_cut(cd8, markers = markers, ref = ref, thr = thr)
}
x<-merge(
x %>% gather(Marker, Value, all_of(unique(cut$Marker))),
cut
)
x<-x %>%
mutate(Marker_cut=Value >= cut)
x<-x %>%
select(`ID.SAR-EM`, Tiempo, Condition, CellID, Marker, Marker_cut) %>%
mutate(Marker_pos=paste0(Marker,".",Marker_cut)) %>%
group_by(`ID.SAR-EM`,Tiempo, Condition, CellID) %>%
summarise(Pheno=paste0(Marker_pos, collapse = " ")) %>%
# mutate(Pheno=paste0("IFNg.",IFNg_p," ","TNFa.",TNFa_p," ","CD69.",CD69_p," ","CD107a.",CD107a_p)) %>%
mutate(Pheno=gsub("[A-Za-z0-9]*.FALSE |[A-Za-z0-9]*.FALSE$| [A-Za-z0-9]*.FALSE","",Pheno),
Pheno=gsub(".TRUE","+",Pheno),
Pheno=gsub("^$","Neg",Pheno))
x.dt<-x %>%
group_by(`ID.SAR-EM`, Tiempo, Condition, Pheno) %>%
count() %>%
group_by(`ID.SAR-EM`, Tiempo, Condition) %>%
mutate(perc=n*100/sum(n))
return(x.dt)
}
transform_gs<-function(gs, saveparams=NULL, trans_params_obj=NULL, index=1){
if (is.null(trans_params_obj)){
log_mark<-colnames(gs)[!grepl("FS|SS|Time", colnames(gs))]
trans_params<-lapply(log_mark, function(x) list(channel=x, scale="biexp",maxvalue=250000,pos=4, widthBasis=-400, max=5, min=0))
names(trans_params)<-log_mark
log_mark_lin<-colnames(gs)[grepl("FS|SS|Time", colnames(gs))]
trans_params_lin<-lapply(log_mark_lin, function(x) list(channel=x, scale="lin",
max=max(flowCore::exprs(gh_pop_get_data(gs, "root"))[,x])*1.1, min=0))
names(trans_params_lin)<-log_mark_lin
trans_params<-c(trans_params_lin, trans_params)
}else{
log_mark<-colnames(gs)[!grepl("FSC|SSC|Time", colnames(gs))]
log_mark_lin<-colnames(gs)[grepl("FSC|SSC|Time", colnames(gs))]
}
shiny::runApp(shiny::shinyApp(
ui = fluidPage(
sidebarLayout(
sidebarPanel(selectInput("channel", "Channel", colnames(gs), multiple = F),
uiOutput("maxvalue"),
uiOutput("pos"),
uiOutput("widthBasis"),
uiOutput("max"),
uiOutput("min"),
actionButton("applyBut", "Apply"),
actionButton("stopBut", "Quit")),
mainPanel(plotOutput("hist"))
)
),
server = function(input, output) {
output$hist <- renderPlot({
gs.trans<-gs_clone(gs[index])
max<-input$max
if (trans_params[[input$channel]]$scale == "biexp"){
trans.obj<-flowjo_biexp_trans(maxValue = input$maxvalue, pos=input$pos,
widthBasis=input$widthBasis)
transList <- transformerList(input$channel, trans.obj)
gs.trans <- transform(gs.trans, transList)
max<-10^input$max
}
ggcyto(gs.trans, aes(x = .data[[input$channel]]), subset = "root")+
geom_density(fill = "blue", alpha= 0.5)+
ggcyto_par_set(limits = list(x = c(input$min,max)))
})
output$maxvalue<-renderUI({if(trans_params[[input$channel]]$scale == "biexp"){
sliderInput("maxvalue", "maxValue", min=0, max=1000000, value=trans_params[[input$channel]]$maxvalue)}})
output$pos<-renderUI({if(trans_params[[input$channel]]$scale == "biexp"){
sliderInput("pos", "pos", min=0, max=10, value=trans_params[[input$channel]]$pos, step = 0.5)}})
output$widthBasis<-renderUI({if(trans_params[[input$channel]]$scale == "biexp"){
sliderInput("widthBasis", "widthBasis", min=-1000, max=0, value=trans_params[[input$channel]]$widthBasis)}})
output$max<-renderUI({
if(trans_params[[input$channel]]$scale == "biexp"){
sliderInput("max", "Max X", min=0, max=6, value=log10(trans_params[[input$channel]]$max), step=0.1)
}else{
sliderInput("max", "Max X", min=0, max=trans_params[[input$channel]]$max,
value=trans_params[[input$channel]]$max)
}
})
output$min<-renderUI({
if(trans_params[[input$channel]]$scale == "biexp"){
sliderInput("min", "Min X", min=-1000, max=100000, value=trans_params[[input$channel]]$min)
}else{
sliderInput("min", "Min X", min=0, max=trans_params[[input$channel]]$max, value=trans_params[[input$channel]]$min)
}
})
observeEvent(input$applyBut, {
print("Transformation and Scaling Updated!")
if (isolate(input$channel) %in% log_mark){
trans_params[[isolate(input$channel)]]$maxvalue<<-isolate(input$maxvalue)
trans_params[[isolate(input$channel)]]$pos<<-isolate(input$pos)
trans_params[[isolate(input$channel)]]$widthBasis<<-isolate(input$widthBasis)
trans_params[[isolate(input$channel)]]$max<<-10^isolate(input$max)
trans_params[[isolate(input$channel)]]$min<<-isolate(input$min)
}
if (isolate(input$channel) %in% log_mark_lin){
trans_params[[isolate(input$channel)]]$max<<-isolate(input$max)
trans_params[[isolate(input$channel)]]$min<<-isolate(input$min)
}
})
observeEvent(input$stopBut, {
stopApp()
})
}
))
trans_apply(gs, trans_params)
print("Transformation Applied")
if (!is.null(saveparams)){
saveRDS(trans_params, file=saveparams)
}
return(trans_params)
}
trans_apply<-function(gs, trans_params){
for (i in 1:length(trans_params)){
if (trans_params[[i]]$scale == "biexp"){
print(trans_params[[i]]$channel)
trans.obj<-flowjo_biexp_trans(maxValue = trans_params[[i]]$maxvalue,
pos=trans_params[[i]]$pos,
widthBasis=trans_params[[i]]$widthBasis)
transList <- transformerList(trans_params[[i]]$channel, trans.obj)
gs <- transform(gs, transList)
}
}
}
ggcyto_trans<-function(gs, x, y, trans_params_obj=trans_params, subset, gates=T, stats=T, ...){
g<-ggcyto(gs, aes(.data[[x]], .data[[y]]), subset=subset, ...)+
ggcyto_par_set(limits = list(x = c(trans_params_obj[[x]]$min,trans_params_obj[[x]]$max),
y=c(trans_params_obj[[y]]$min,trans_params_obj[[y]]$max)))
if(gates==T){
if (subset == "root"){
gates<-gs_get_pop_paths(gs)[grepl(paste0("^/","[^/]*$"), gs_get_pop_paths(gs))]
}else{
gates<-gs_get_pop_paths(gs)[grepl(paste0(subset,"/","[^/]*$"), gs_get_pop_paths(gs))]
}
g<-g+geom_point(size=0.1, alpha=0.1)+
geom_gate(gates)
if (stats== T){
g<-g+geom_stats(gates)
}
}
return(g)
}
ggcyto_trans_all<-function(gs, index=1, trans_params_obj=trans_params, stats=T,...){
subsets<-unlist(sapply(gs_get_pop_paths(gs), function(x) strsplit(x, "/")[[1]][length(strsplit(x, "/")[[1]])-1]))
subsets<-c("root",unique(subsets[subsets != ""]))
g.list<-list()
for (subset in subsets){
if (subset == "root"){
gates<-gs_get_pop_paths(gs)[grepl(paste0("^/","[^/]*$"), gs_get_pop_paths(gs))]
}else{
gates<-gs_get_pop_paths(gs)[grepl(paste0(subset,"/","[^/]*$"), gs_get_pop_paths(gs))]
}
subset.x<-names(gs_pop_get_gate(gs, gates[1])[[1]]@parameters)[1]
subset.y<-names(gs_pop_get_gate(gs, gates[1])[[1]]@parameters)[2]
g.list[[subset]]<-ggcyto::as.ggplot(ggcyto_trans(gs[[index]], subset.x, subset.y,
trans_params_obj, subset, stats=stats))
}
g<-do.call(ggpubr::ggarrange, c(g.list, ...))
g<-ggpubr::annotate_figure(g, top = ggpubr::text_grob(sampleNames(gs)[index],
color = "black", face = "bold", size = 14))
return(g)
}
LMD2FCS<-function(files, output.dir=NULL){
if(is.null(output.dir)){
route<-paste0(gsub("/[^/]*$","",files[1]),"/")
}
for (lmd in files){
lmd<-gsub(".*/","",lmd)
fcs<-read.FCS(paste0(route,lmd), dataset = 2)
keyword(fcs)['$FIL']<-paste0(gsub(".LMD","",lmd), ".fcs")
write.FCS(fcs, paste0(route, gsub(".LMD","",lmd), ".fcs"))
}
print("Conversión completada")
}
gates_save<-function(gs, file="gates.rds", save=T){
gates.list<-list()
pop_paths<-gs_get_pop_paths(gs)[gs_get_pop_paths(gs) != "root"]
pop_paths<-lapply(pop_paths, function(x) rev(rev(strsplit(x, "/")[[1]])[1:2]))
for (gate in pop_paths){
parent<-if (gate[1] == ""){"root"}else{gate[1]}
gated_pop<-gate[2]
gates.list[[paste0(parent,"/",gated_pop)]]<-gs_pop_get_gate(gs, gated_pop)
}
if(save){saveRDS(gates.list, file)}
return(gates.list)
}
gates_apply<-function(gs, gates, exact=T){
if (exact){
for (gate in names(gates)){
parent<-strsplit(gate, "/")[[1]][1]
gated_pop<-strsplit(gate, "/")[[1]][2]
gs_pop_add(gs, gates[[gate]], parent=parent, name=gated_pop)
print(paste0("Gate ",gated_pop," applied!"))
}
}else{
for (gate in names(gates)){
parent<-strsplit(gate, "/")[[1]][1]
gated_pop<-strsplit(gate, "/")[[1]][2]
gs_pop_add(gs, gates[[gate]][[1]], parent=parent, name=gated_pop)
print(paste0("Gate ",gated_pop," applied!"))
}
}
recompute(gs)
return(gs)
}

Loading…
Cancel
Save