---
|
|
title: "CytoR"
|
|
author: "Marcel Costa-Garcia"
|
|
date: "`r Sys.Date()`"
|
|
output: html_document
|
|
---
|
|
|
|
```{r setup, include=FALSE}
|
|
knitr::opts_chunk$set(echo = TRUE, warning=FALSE, message=FALSE)
|
|
```
|
|
|
|
First we load the required libreries and import functions from `functionsCyto.R`:
|
|
```{r}
|
|
library(tidyverse)
|
|
library(flowWorkspace)
|
|
library(Biobase)
|
|
library(flowGate)
|
|
source("functionsCyto.R")
|
|
```
|
|
|
|
We import the .LMD or .fcs files to a FlowSet object that we convert into a GatingSet (in the case of LMD files, they include both the format FCS2 and FCS3, which is accessed as dataset=2):
|
|
```{r}
|
|
fs<-read.ncdfFlowSet(files=list.files("BcellPhenotype-Files/",".LMD", full.names = T), readonly = F, dataset=2)
|
|
gs <- GatingSet(fs)
|
|
gs
|
|
```
|
|
|
|
Next, we will compensate with the compensation matrix of the adquisition, which is embed into the file. We can import another compensation matrix:
|
|
|
|
```{r}
|
|
comp<-spillover(fs[[1]])$`$SPILLOVER`
|
|
colnames(comp)<-colnames(gs)[5:14]
|
|
rownames(comp)<-colnames(gs)[5:14]
|
|
comp
|
|
gs<-compensate(gs, comp)
|
|
```
|
|
|
|
To transform the axis in an interactive and visual way, I have created the following function:
|
|
```{r, eval=FALSE}
|
|
trans_params<-transform_gs(gs)
|
|
```
|
|
|
|
![](trans_params.jpg)
|
|
|
|
```{r, include=F}
|
|
trans_params<-readRDS("BcellPhenotype-trans_params.rds")
|
|
trans_apply(gs, trans_params = trans_params)
|
|
```
|
|
|
|
```{r}
|
|
trans_params$`FL3-A`
|
|
```
|
|
We can save the transformation params in a file and latter we can import and apply directly (including in other experiments):
|
|
```{r, eval=F}
|
|
saveRDS(trans_params, "BcellPhenotype-trans_params.rds")
|
|
```
|
|
|
|
|
|
```{r, eval=F}
|
|
trans_params<-readRDS("BcellPhenotype-trans_params.rds")
|
|
trans_apply(gs, trans_params = trans_params)
|
|
```
|
|
|
|
As it wasn't done during the acquisition, we will define the marker name for the channels of interest:
|
|
```{r}
|
|
markers<-colnames(gs)
|
|
markers[c(7,13)]<-c("CD19","L&D")
|
|
names(markers)<-colnames(gs)
|
|
markernames(gs)<-markers
|
|
markernames(gs)
|
|
```
|
|
|
|
Finally, we will clean a bit the sample names:
|
|
```{r}
|
|
sampleNames(gs)
|
|
sampleNames(gs)<-gsub("\\s[0-9]*.LMD","",sampleNames(gs))
|
|
sampleNames(gs)<-gsub(".*\\s","",sampleNames(gs))
|
|
pData(gs)$name<-rownames(pData(gs))
|
|
sampleNames(gs)
|
|
```
|
|
|
|
|
|
And we are ready to gate! We will be using the `gs_interactive_gate` function from `flowGate` package.
|
|
```{r, include=F}
|
|
gates<-readRDS("BcellPhenotype-gates.rds")
|
|
gs<-gates_apply(gs, gates)
|
|
```
|
|
|
|
```{r, eval=F}
|
|
gs_gate_interactive(gs,
|
|
filterId = "Leukocytes",
|
|
dims = list("FS-A", "SS-A"))
|
|
```
|
|
![](Gates.jpg)
|
|
|
|
```{r, eval=F}
|
|
gs_gate_interactive(gs,
|
|
subset = "Leukocytes",
|
|
filterId = "CD19 L&D",
|
|
dims = list("CD19", "L&D"))
|
|
```
|
|
|
|
We can save the created gates into a file to import latter on (which may be also used to apply the gating strategy into a new experiment):
|
|
```{r, eval=F}
|
|
gates<-gates_save(gs, file = "BcellPhenotype-gates.rds")
|
|
|
|
gates<-readRDS("BcellPhenotype-gates.rds")
|
|
gs<-gates_apply(gs, gates)
|
|
```
|
|
|
|
```{r}
|
|
plot(gs)
|
|
```
|
|
|
|
We can rapidly explore the results using the `autoplot` function:
|
|
```{r}
|
|
autoplot(gs, "Leukocytes", bins=128, nrow=1)
|
|
autoplot(gs[["aCDE19"]], bins=128, nrow=1)
|
|
```
|
|
We can further personalize the plot with similar sintaxis as `ggplot` with the `ggcyto` package:
|
|
```{r}
|
|
g<-ggcyto(gs, subset = "Leukocytes", bins=128, aes(CD19,`L&D`))+
|
|
facet_grid(.~factor(name, levels=c("Unst","aCDE19")))+
|
|
geom_hex(bins=128)+
|
|
geom_gate()+
|
|
geom_stats()+
|
|
scale_fill_gradient(low="black", high="violet")
|
|
g
|
|
```
|
|
|
|
Finally, we can export the stats and plot them:
|
|
```{r, fig.width=4}
|
|
stats<-gs_pop_get_stats(gs, nodes=gs_get_pop_paths(gs, path = "auto")[3:6], type="perc")
|
|
stats
|
|
|
|
g2<-ggplot(stats, aes(factor(sample, levels=c("Unst","aCDE19")), percent, fill=pop))+
|
|
geom_bar(stat="identity", color="black")+xlab("Samples")
|
|
|
|
ggpubr::ggarrange(as.ggplot(g), g2, ncol=1)
|
|
|
|
```
|
|
|
|
Code:
|
|
```r
|
|
library(tidyverse)
|
|
library(flowWorkspace)
|
|
library(Biobase)
|
|
library(flowGate)
|
|
source("functionsCyto.R")
|
|
|
|
fs<-read.ncdfFlowSet(files=list.files("BcellPhenotype-Files/",".LMD", full.names = T), readonly = F, dataset=2)
|
|
gs <- GatingSet(fs)
|
|
|
|
comp<-spillover(fs[[1]])$`$SPILLOVER`
|
|
colnames(comp)<-colnames(gs)[5:14]
|
|
rownames(comp)<-colnames(gs)[5:14]
|
|
gs<-compensate(gs, comp)
|
|
|
|
trans_params<-transform_gs(gs)
|
|
|
|
markers<-colnames(gs)
|
|
markers[c(7,13)]<-c("CD19","L&D")
|
|
names(markers)<-colnames(gs)
|
|
markernames(gs)<-markers
|
|
|
|
sampleNames(gs)<-gsub("\\s[0-9]*.LMD","",sampleNames(gs))
|
|
sampleNames(gs)<-gsub(".*\\s","",sampleNames(gs))
|
|
pData(gs)$name<-rownames(pData(gs))
|
|
|
|
gs_gate_interactive(gs,
|
|
filterId = "Leukocytes",
|
|
dims = list("FS-A", "SS-A"))
|
|
|
|
gs_gate_interactive(gs,
|
|
subset = "Leukocytes",
|
|
filterId = "CD19 L&D",
|
|
dims = list("CD19", "L&D"))
|
|
|
|
g<-ggcyto(gs, subset = "Leukocytes", bins=128, aes(CD19,`L&D`))+
|
|
facet_grid(.~factor(name, levels=c("Unst","aCDE19")))+
|
|
geom_hex(bins=128)+
|
|
geom_gate()+
|
|
geom_stats()+
|
|
scale_fill_gradient(low="black", high="violet")
|
|
|
|
stats<-gs_pop_get_stats(gs, nodes=gs_get_pop_paths(gs, path = "auto")[3:6], type="perc")
|
|
stats
|
|
|
|
g2<-ggplot(stats, aes(factor(sample, levels=c("Unst","aCDE19")), percent, fill=pop))+
|
|
geom_bar(stat="identity", color="black")+xlab("Samples")
|
|
|
|
ggpubr::ggarrange(as.ggplot(g), g2, ncol=1)
|
|
```
|