|
|
- library(shiny)
- library(openxlsx)
- library(readxl)
- # library(ggplot2)
- library(reshape2)
- # library(dplyr)
- library(ggbeeswarm)
- library(magrittr)
- library(flextable)
- source("funcions.R")
- library(tidyverse)
- library(rstatix)
- library(ggpubr)
-
- ui <- fluidPage(
- #Navbar
- navbarPage("ELISPOTS",
- tabPanel("Diseño",
- sidebarPanel(
- fileInput(inputId = "file1", label = "Dades", multiple = F),
- selectInput(inputId = "test", "Test Estadístic", selected = "Ttest", choices = c("T-test (adj Holm)","Wilcoxon (adj Holm)")),
- sliderInput(inputId = "umbral_pos", "Mínimo para positivo:", min = 0, max=100, step = 5, value = 10),
- checkboxInput(inputId = "positive", label = "Mostrar positivitat", value = F),
- checkboxInput(inputId = "showstats", label = "Mostrar estadística", value = F),
- downloadButton("downloadData", "Descarregar Informe")
- ),
-
- mainPanel(
- plotOutput("distPlot"),
- uiOutput("flexstats")
- )
- ),
- tabPanel("Exportar",
- sidebarPanel(width=2,
- sliderInput("width", "Ancho", min=1000, max=20000, step=1000, value=10000),
- sliderInput("height", "Altura", min=1000, max=20000, step=1000, value=6000),
- textInput("colors", label="Colors", value=""),
- sliderInput("boxplot-width", "% Ancho Boxplots", min=0.1, max=1, step=0.1, value=0.7),
- sliderInput("point-size", "Tamaño puntos", min=1, max=10, step=1, value=3),
- sliderInput("font-size", "Tamaño textos", min=5, max=30, step=1, value=11),
- checkboxInput(inputId = "stats2", label = "Mostrar estadística", value = F),
- checkboxInput(inputId = "legend", label = "Mostrar llegenda", value = T),
- selectInput("theme", "Seleccionar Tema", selected="BW", choices=c("BW", "Default", "Classic")),
- downloadButton("downloadPicture", "Exportar")
- ),
- mainPanel(
- uiOutput("expPlotUI")
- )
- )
- )
-
- )
-
- # Define server logic required to draw a histogram
- server <- function(input, output) {
- dades<-reactiveValues()
- dades$taula<-NULL
- dades$stats<-NULL
- dades$final<-NULL
- dades$maps<-NULL
- dades$plot<-NULL
- observe({
- if (!is.null(input$file1)){
- dades$taula<-read_xlsx(input$file1$datapath)
- }
- })
-
- output$distPlot <- renderPlot({
- observeEvent(dades$taula, {})
- if (!is.null(dades$taula)){
-
- ctrl<-"Ctrl+"
- mock<-"Mock"
-
- table<-dades$taula[,colnames(dades$taula) != "Groups"]
- t_mean<-dcast(melt(table, id="Mice"),Mice~variable, mean, na.rm=T)
-
- if (length(grep("Mock", colnames(t_mean))) == 1){
- t_substr<-data.frame("Mice"=t_mean[,1],
- as.data.frame(t(apply(t_mean[,2:ncol(table)], 1, function(x) x-x[mock])))
- )
- t_mean_group<-merge(t_mean, unique(dades$taula[c("Mice","Groups")]), id="Mice")
- t_mean_group$Groups<-as.factor(t_mean_group$Groups)
- mock_mean<-dcast(t_mean_group, Groups~., value.var=mock, mean)
- mock_mean[,2]<-mock_mean[,2]*2
- mock_mean[mock_mean$. < input$umbral_pos,2]<-input$umbral_pos
-
- t_substr<-merge(t_substr, unique(dades$taula[c("Mice","Groups")]), id="Mice")
- t_substr<-t_substr[,c(1, ncol(t_substr), 2:(ncol(t_substr)-1))]
- t_substr<-t_substr[,c("Mice", "Groups", colnames(t_substr)[!colnames(t_substr) %in% c("Mice", "Groups")])]
- t_substr[,3:ncol(t_substr)]<-apply(t_substr[,3:ncol(t_substr)],2, function(x) replace(x, which(x < 0),0))
- colnames(t_substr)<-c("Mice", "Groups", colnames(t_mean)[2:ncol(t_mean)])
- }else{
- t_especifica<-t_mean[,grep("Mock_", colnames(t_mean), invert=T)]
- t_mock<-t_mean[,c(which(colnames(t_mean) == "Mice"),grep("Mock_", colnames(t_mean)))]
- t_temp<-melt(t_especifica, variable.name = "condition", value.name = "spots")
- t_temp["spots_mock"]<-melt(t_mock, variable.name = "condition")[,"value"]
- t_substr<-data.frame(t_temp[c("Mice","condition")], "spots"=t_temp["spots"]-t_temp["spots_mock"])
- t_substr<-dcast(t_substr, Mice~condition)
- t_substr<-merge(t_substr, unique(dades$taula[c("Mice","Groups")]), id="Mice")
- t_substr$Groups<-as.factor(t_substr$Groups)
- }
-
- t_substr_gp<-t_substr
- t_substr_gp[3:ncol(t_substr)]<-apply(t_substr[3:ncol(t_substr)], 2, function(x) gsub(".",",",x, fixed=T))
- t_substr_gp<-t_substr_gp[order(factor(t_substr_gp$Mice, levels = unique(table$Mice))),]
- doc<-t(t_substr_gp)
-
- write.xlsx(doc, "data4graphpad.xlsx",rowNames=T, overwrite=T)
-
- t<-melt(t_substr[,!colnames(t_substr) %in% c(ctrl, mock)])
-
- if (input$showstats == F){
- t_stats<-as.data.frame(matrix(nrow=0, ncol=6))
- colnames(t_stats)<-c("variable", "group1", "group2", "p.adj", "p.signif", "Method")
- t_maps<-list()
- t_maps[["label"]]<-as.data.frame(matrix(nrow = 0, ncol=2))
- colnames(t_maps$label)<-c("x", "y")
- t_maps[["brackets"]]<-as.data.frame(matrix(nrow = 0, ncol=4))
- colnames(t_maps$brackets)<-c("y1", "y2", "x1", "x2")
- dades$stats<<-t_stats
- dades$maps<<-t_maps
- }else{
- if (input$test == "T-test (adj Holm)"){
- t_stats<-t %>% rename("Condition"="variable") %>% group_by(Condition) %>% t_test(value~Groups)
- }
- if (input$test == "Wilcoxon (adj Holm)"){
- t_stats<-t %>% rename("Condition"="variable") %>% group_by(Condition) %>% wilcox_test(value~Groups)
- }
-
- dades$stats<<-t_stats
- }
- if (length(unique(dades$taula %>% pull(Groups))) < 2){
- dades$stats<<-null
- }
-
- c(ctrl, mock)[c(ctrl, mock) %in% colnames(t_substr)]
- dades$final<<-t_substr %>% select(-c(ctrl, mock)[c(ctrl, mock) %in% colnames(t_substr)])
-
- set.seed(123)
- if (input$positive == T){
- ids=c("Mice", "Groups", c(ctrl, mock)[c(ctrl, mock) %in% colnames(t_substr)])
- validate(
- need(exists("mock_mean"), "No se puede elegir positividad con múltiples mocks")
- )
- if (exists("mock_mean")){
- g<-ggplot(melt(t_substr, id=ids), aes(variable, value))+
- labs(x="", y="Spots/2.5*10^5 cells")+
- # geom_errorbar(stat="summary", position=position_dodge(width=0.9), width=0.5, aes(fill=Groups))+
- geom_hline(data=mock_mean, aes(color=Groups, yintercept = `.`))+
- # geom_bar(stat="summary", position="dodge", color="black", aes(fill=Groups))+
- geom_boxplot(color="black", aes(fill=Groups), alpha=0.4, outlier.alpha = 0)+
- geom_jitter(position=position_jitterdodge(jitter.width = 0.2), shape=21, aes(fill=Groups), size=3)+
- # geom_quasirandom(position = position_quasirandom(), shape=21)+
- scale_x_discrete(limits=colnames(t_substr)[!colnames(t_substr) %in% c("Mice", "Groups", ctrl, mock)])+
- geom_segment(data=t_maps$brackets, aes(x=x1, xend=x2, y=y1, yend=y2), color="black")+
- geom_text(data=t_stats, aes(t_maps$label$x, t_maps$label$y, label=p.signif), color="black")+
- theme_bw()+
- theme(axis.text.x=element_text(angle=45, hjust=1))
- }
-
- }else{
- ids=c("Mice", "Groups", c(ctrl, mock)[c(ctrl, mock) %in% colnames(t_substr)])
- g<-ggplot(melt(t_substr, id=ids, variable.name = "Condition"), aes(Condition, value))+
- labs(x="", y="Spots/2.5*10^5 cells")+
- # geom_errorbar(stat="summary", position=position_dodge(width=0.9), width=0.5, aes(fill=Groups))+
- # geom_bar(stat="summary", position="dodge", color="black", aes(fill=Groups))+
- geom_boxplot(color="black", aes(fill=Groups), alpha=0.4, outlier.alpha = 0)+
- geom_jitter(position=position_jitterdodge(jitter.width = 0.2), shape=21, aes(fill=Groups), size=3)+
- # geom_quasirandom(width=0.2, position=position_dodge(), shape=21)+
- scale_x_discrete(limits=colnames(t_substr)[!colnames(t_substr) %in% c("Mice", "Groups", ctrl, mock)])+
- # geom_segment(data=t_maps$brackets, aes(x=x1, xend=x2, y=y1, yend=y2), color="black")+
- # geom_text(data=t_stats, aes(t_maps$label$x, t_maps$label$y, label=p.signif), color="black")+
- theme_bw()+
- theme(axis.text.x=element_text(angle=45, hjust=1))
- }
- if (input$showstats == T){
- stat.pos<-t_stats %>% add_xy_position(x="Condition", step.increase = 0.06, dodge = 0.75)
- g+stat_pvalue_manual(stat.pos,hide.ns = T)
- }else{
- g
- }
- }
-
- })
-
- output$flexstats <- renderUI({
- observeEvent(dades$stats, {})
- t_stats<-dades$stats
- if (!is.null(dades$stats)){
- t_stats %>%
- flextable() %>%
- theme_vanilla() %>%
- fontsize(size=14, part="all") %>%
- padding(padding=10, part="all") %>%
- color(~ p.adj < 0.05, color = "red")%>%
- autofit() %>% htmltools_value()
- }
- })
-
- output$expPlotUI<- renderUI({
- if (!is.null(dades$final)){
- plotOutput("expPlot", width=paste0(input$width/10,"px"), height = paste0(input$height/10, "px"))
- }
- })
-
- output$expPlot <- renderPlot({
- observeEvent(dades$final, {})
- if (!is.null(dades$final)){
- print(dades$stats)
- t_substr<-dades$final
- t_stats<-dades$stats
-
- ids<-c("Mice", "Groups")
- set.seed(123)
- g<-ggplot(melt(t_substr, id=ids, variable.name="Condition"), aes(Condition, value))+
- labs(x="", y="Spots/2.5*10^5 cells")+
- geom_boxplot(color="black", aes(fill=Groups), alpha=0.4, outlier.alpha = 0, position=position_dodge(width=0.8),width=input$`boxplot-width`)+
- geom_jitter(position=position_jitterdodge(jitter.width = 0.2), shape=21, aes(fill=Groups), size=input$`point-size`)+
- scale_x_discrete(limits=colnames(t_substr)[!colnames(t_substr) %in% c("Mice", "Groups")])
- if (input$theme == "BW"){
- g<-g+theme_bw(base_size = input$`font-size`)
- }
- if (input$theme == "Classic"){
- g<-g+theme_classic(base_size = input$`font-size`)
- }
- if (input$theme == "Default"){
- g<-g+theme_gray(base_size = input$`font-size`)
- }
- g<-g+theme(axis.text.x=element_text(angle=45, hjust=1))
- if (input$legend == F){
- g<-g+guides(color=FALSE, fill=FALSE)
- }
- if (input$stats2 == T){
- stat.pos<-dades$stats %>% add_xy_position(x="Condition", step.increase = 0.06, dodge = 0.75)
- g<-g+stat_pvalue_manual(stat.pos,hide.ns = T)
- }
- if (input$colors != ""){
- v_col<-strsplit(input$colors, ",")[[1]]
- g<-g+scale_color_manual(values=v_col)+
- scale_fill_manual(values=v_col)
- }
- dades$plot<<-g
- g
- }
- }, res=72)
-
- output$downloadData <- downloadHandler(
- filename = function() {
- paste("elispot", ".zip", sep="")
- },
- content = function(file){
- print(file)
- # tempReport <- file.path(tempdir(), "elispots.Rmd")
- # file.copy("elispots.Rmd", tempReport, overwrite = TRUE)
- params=list(file=input$file1$datapath, positive=input$positive, showstats=input$showstats, test=input$test, umbral_pos=input$umbral_pos)
- rmarkdown::render("elispots.Rmd", output_file="Results_elispot.html", params=params, envir = new.env(parent = globalenv()))
- zip(file,
- c("Results_elispot.html","data4graphpad.xlsx")
- )
-
- },
- contentType="application/zip"
- )
- output$downloadPicture <- downloadHandler(
- filename = function() {
- paste("Figura", ".zip", sep="")
- },
- content = function(file){
- print(file)
- # tempReport <- file.path(tempdir(), "elispots.Rmd")
- # file.copy("elispots.Rmd", tempReport, overwrite = TRUE)
- png("plot.png", width = input$width, height=input$height, units = "px", res=720)
- plot(dades$plot)
- dev.off()
- elispot.plot<-dades$plot
- save(elispot.plot, file="plot.RObject")
- zip(file,
- c("plot.png", "plot.RObject")
- )
- }
- )
- }
-
- # Run the application
- shinyApp(ui = ui, server = server)
|