|
|
@ -1,588 +0,0 @@ |
|
|
|
library(shiny) |
|
|
|
library(ggplot2) |
|
|
|
library(reshape2) |
|
|
|
library(openxlsx) |
|
|
|
library(dplyr) |
|
|
|
library(car) |
|
|
|
library(ggbeeswarm) |
|
|
|
library(gtools) |
|
|
|
library(gridExtra) |
|
|
|
source("../../funcions.R") |
|
|
|
library(survminer) |
|
|
|
library(survival) |
|
|
|
|
|
|
|
# Define UI for application |
|
|
|
ui <- fluidPage( |
|
|
|
|
|
|
|
#Navbar |
|
|
|
navbarPage("Seguimiento in vivos", |
|
|
|
tabPanel("Diseño", |
|
|
|
sidebarPanel( |
|
|
|
fileInput(inputId = "file_sizes", label = "Hoja de tamaños", multiple = F), |
|
|
|
selectInput(inputId = "measure_sys", "Sistema de medida", selected = "L-W-D", choices = c("L-W-D","Min-Max","Absorbance")), |
|
|
|
uiOutput('ncages'), |
|
|
|
uiOutput('lowcut'), |
|
|
|
uiOutput('upcut'), |
|
|
|
uiOutput('goButton'), |
|
|
|
uiOutput('iterations'), |
|
|
|
downloadButton("downloadData", "Descargar Excel") |
|
|
|
), |
|
|
|
mainPanel( |
|
|
|
plotOutput("firstPlot"), |
|
|
|
plotOutput("distPlot") |
|
|
|
) |
|
|
|
), |
|
|
|
tabPanel("Análisis", |
|
|
|
sidebarPanel( |
|
|
|
fileInput(inputId = "file_analy", label = "Hoja de análisis", multiple = F), |
|
|
|
selectInput(inputId = "vacc", "Experimento de Vacunación", selected = "No", choices = c("Sí","No")), |
|
|
|
sliderInput("cutoff", "Cutoff para Survival", min=100, max=1500, step=50, value=750), |
|
|
|
checkboxInput("filter_stats","Filtrar Estadística") |
|
|
|
), |
|
|
|
mainPanel( |
|
|
|
h3('Ratones'), |
|
|
|
tableOutput('ntable'), |
|
|
|
h3('Cinéticas'), |
|
|
|
plotOutput('cin_group'), |
|
|
|
plotOutput('cin_indiv'), |
|
|
|
plotOutput('survival', height="800px"), |
|
|
|
h3('Estadística'), |
|
|
|
verbatimTextOutput('stats'), |
|
|
|
tableOutput('tab_stats') |
|
|
|
)), |
|
|
|
tabPanel("Exportar", |
|
|
|
sidebarPanel(width=2, |
|
|
|
h3('Seleccionar figura'), |
|
|
|
selectInput("fig_id", "", selected="", choices=c("Cinética Grupo", "Cinética Individual", "Survival")), |
|
|
|
h3('Formato'), |
|
|
|
sliderInput("width", "Ancho", min=1000, max=20000, step=1000, value=10000), |
|
|
|
sliderInput("height", "Altura", min=1000, max=20000, step=1000, value=6000), |
|
|
|
textInput("colors", label="Colors", value=""), |
|
|
|
sliderInput("errorbar-width", "% Ancho errorbars", min=0.05, max=1, step=0.05, value=0.05), |
|
|
|
sliderInput("point-size", "Tamaño puntos", min=1, max=10, step=1, value=3), |
|
|
|
sliderInput("font-size", "Tamaño textos", min=5, max=30, step=1, value=11), |
|
|
|
checkboxInput(inputId = "legend", label = "Mostrar llegenda", value = T), |
|
|
|
selectInput("theme", "Seleccionar Tema", selected="BW", choices=c("BW", "Default", "Classic")), |
|
|
|
downloadButton("downloadPicture", "Exportar") |
|
|
|
), |
|
|
|
mainPanel( |
|
|
|
uiOutput("expPlotUI") |
|
|
|
) |
|
|
|
) |
|
|
|
) |
|
|
|
|
|
|
|
) |
|
|
|
|
|
|
|
# Define server logic required to draw a histogram |
|
|
|
server <- function(input, output) { |
|
|
|
|
|
|
|
# Diseño |
|
|
|
dades<-reactiveValues() |
|
|
|
dades$taula<-NULL |
|
|
|
dades$groups<-NULL |
|
|
|
dades$db<-NULL |
|
|
|
observe({ |
|
|
|
if (!is.null(input$file_sizes)){ |
|
|
|
dades$taula<-read.xlsx(input$file_sizes$datapath, sheet = 1) |
|
|
|
dades$groups<-read.xlsx(input$file_sizes$datapath, sheet = 2)[,1] |
|
|
|
} |
|
|
|
}) |
|
|
|
output$firstPlot <- renderPlot({ |
|
|
|
observeEvent(dades$taula, {}) |
|
|
|
if (!is.null(dades$taula)){ |
|
|
|
ggplot(dades$taula, aes(x="1", y=Volumen))+geom_quasirandom(width=0.2) |
|
|
|
} |
|
|
|
}) |
|
|
|
|
|
|
|
output$iterations<-renderUI({ |
|
|
|
if (!is.null(dades$taula)){ |
|
|
|
sliderInput("iterations", "Iteraciones", min=100, max=2000, step=100, value=100) |
|
|
|
} |
|
|
|
}) |
|
|
|
output$lowcut<-renderUI({ |
|
|
|
if (!is.null(dades$taula)){ |
|
|
|
sliderInput("lowcut", "Corte inferior", min=0, max=1000, step=5, value=0) |
|
|
|
} |
|
|
|
}) |
|
|
|
output$upcut<-renderUI({ |
|
|
|
if (!is.null(dades$taula)){ |
|
|
|
sliderInput("upcut", "Corte superior", min=0, max=1000, step=5, value=400) |
|
|
|
} |
|
|
|
}) |
|
|
|
output$goButton<-renderUI({ |
|
|
|
if (!is.null(dades$taula)){ |
|
|
|
actionButton("goButton", "Selecciona") |
|
|
|
} |
|
|
|
}) |
|
|
|
output$ncages<-renderUI({ |
|
|
|
if (is.null(dades$taula)){ |
|
|
|
sliderInput("ncages", "Cajas", min=1, max=10, value=1) |
|
|
|
} |
|
|
|
}) |
|
|
|
grafic<-eventReactive(input$goButton,{ |
|
|
|
df<-dades$taula |
|
|
|
up_cuttof<-input$upcut |
|
|
|
low_cuttof<-input$lowcut |
|
|
|
df<-df[df$Volumen < up_cuttof & df$Volumen > low_cuttof,] |
|
|
|
df["Mouse"]<-gsub("[a-zA-Z]", "", df$MouseID) |
|
|
|
|
|
|
|
s<-shapiro.test(df$Volumen)[[2]] |
|
|
|
|
|
|
|
ngroup<-length(dades$groups) |
|
|
|
|
|
|
|
ind.list<-list() |
|
|
|
pval.list<-list() |
|
|
|
lvn.list<-list() |
|
|
|
test.list<-list() |
|
|
|
for (data in 1:input$iterations){ |
|
|
|
interr=T |
|
|
|
while(interr == T){ |
|
|
|
ind<-sample(rep(dades$groups, each=7), length(unique(df$Mouse))) |
|
|
|
df_temp<-merge(df, data.frame("Mouse"=unique(df$Mouse), "group"=as.factor(ind))) |
|
|
|
interr<-any(table(df_temp$group) < floor(nrow(df_temp)/5) | table(df_temp$group) > ceiling(nrow(df_temp)/5)) |
|
|
|
} |
|
|
|
ind.list[[data]]<-df_temp[,c("MouseID","group")] |
|
|
|
lvn.list[data]<-leveneTest(Volumen ~ group, data = df_temp[,3:4])[[2]][1] |
|
|
|
if (s < 0.05){ |
|
|
|
k<-kruskal.test(df_temp$Volumen,df_temp$group) |
|
|
|
test.list[data]<-k[[1]][1] |
|
|
|
pval.list[data]<-k[[3]][1] |
|
|
|
}else{ |
|
|
|
res.aov<-aov(Volumen~group, data=df_temp) |
|
|
|
pval.list[data]<-summary(res.aov)[[1]][[5]][1] |
|
|
|
test.list[data]<-summary(res.aov)[[1]][[4]][1] |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
index<-which(unlist(lvn.list) == min(unlist(lvn.list)[which(unlist(pval.list) %in% sort(unlist(pval.list), decreasing = T)[1:20])])) |
|
|
|
df_def<-merge(df, ind.list[[index]]) |
|
|
|
dades$db<-df_def |
|
|
|
|
|
|
|
ggplot(df_def, aes(group, Volumen))+ |
|
|
|
geom_boxplot(outlier.alpha = F)+ |
|
|
|
geom_jitter(width=0.25)+ |
|
|
|
geom_point(stat="summary", color="blue", size=3)+ |
|
|
|
lims(y=c(0,max(df_def$Volumen)+10)) |
|
|
|
}) |
|
|
|
output$distPlot <- renderPlot({ |
|
|
|
observeEvent(dades$taula, {}) |
|
|
|
if (!is.null(dades$taula)){ |
|
|
|
grafic() |
|
|
|
} |
|
|
|
}) |
|
|
|
|
|
|
|
output$downloadData <- downloadHandler( |
|
|
|
|
|
|
|
filename = function() { |
|
|
|
paste("invivo", ".xlsx", sep="") |
|
|
|
}, |
|
|
|
content = function(file){ |
|
|
|
ncages<-input$ncages |
|
|
|
nrat_cage<-5 |
|
|
|
id_tumors<-c("L","R") |
|
|
|
timepoint<-c(7,10,13,16,19,22,25) |
|
|
|
|
|
|
|
if (!is.null(input$file_sizes)){ |
|
|
|
template<-expand.grid(dades$db$MouseID, timepoint) |
|
|
|
colnames(template)<-c("MouseID", "Timepoint") |
|
|
|
template<-template[order(template$Timepoint, template$MouseID),] |
|
|
|
template<-merge(template, dades$db[c("MouseID", "group")]) |
|
|
|
if (input$measure_sys == "L-W-D"){ |
|
|
|
template<-rbind(template, template, template) |
|
|
|
template<-template[order(template$Timepoint, template$MouseID),] |
|
|
|
template["TS"]<-rep(c("TS-Length", "TS-Width", "TS-Deep"), nrow(template)/3) |
|
|
|
dtemplate<-dcast(template, MouseID+group+TS~Timepoint) |
|
|
|
dtemplate<-dtemplate[mixedorder(as.character(dtemplate$MouseID)),] |
|
|
|
} |
|
|
|
if (input$measure_sys == "Min-Max"){ |
|
|
|
template<-rbind(template, template) |
|
|
|
template<-template[order(template$Timepoint, template$MouseID),] |
|
|
|
template["DPV"]<-rep(c("Major", "Minor"), nrow(template)/2) |
|
|
|
dtemplate<-dcast(template, MouseID+group+DPV~Timepoint) |
|
|
|
dtemplate<-dtemplate[mixedorder(as.character(dtemplate$MouseID)),] |
|
|
|
} |
|
|
|
dtemplate<-dtemplate %>% add_column(.after="MouseID", "ID tumor"=dtemplate$MouseID)%>% rename(`ID animal`=MouseID) |
|
|
|
dtemplate["ID tumor"]<-gsub("[[:digit:]]","",dtemplate$`ID tumor`) |
|
|
|
dtemplate["ID animal"]<-gsub("[LR]","",dtemplate$`ID animal`) |
|
|
|
dtemplate[,5:ncol(dtemplate)]<-"" |
|
|
|
}else{ |
|
|
|
template<-expand.grid(LETTERS[1:ncages], 1:5, id_tumors, timepoint)[,-2] |
|
|
|
colnames(template)<-c("Cage", "ID tumor", "Timepoint") |
|
|
|
nids<-length(id_tumors)*length(timepoint) |
|
|
|
template[order(template$Cage),"ID animal"]<-rep(1:(nrow(template)/(nids)), each=nids) |
|
|
|
template<-template[order(template$Timepoint, template$Cage, template$`ID animal`),] |
|
|
|
template["Group"]<-"" |
|
|
|
if (input$measure_sys == "L-W-D"){ |
|
|
|
template<-rbind(template, template, template) |
|
|
|
template<-template[order(template$Timepoint, template$Cage, template$`ID animal`, template$`ID tumor`),] |
|
|
|
template["TS"]<-rep(c("TS-Length", "TS-Width", "TS-Deep"), nrow(template)/3) |
|
|
|
dtemplate<-dcast(template, Cage+`ID animal`+`ID tumor`+Group+TS~Timepoint) |
|
|
|
} |
|
|
|
if (input$measure_sys == "Min-Max"){ |
|
|
|
template<-rbind(template, template) |
|
|
|
template<-template[order(template$Timepoint, template$Cage, template$`ID animal`, template$`ID tumor`),] |
|
|
|
template["DPV"]<-rep(c("Major", "Minor"), nrow(template)/2) |
|
|
|
dtemplate<-dcast(template, Cage+`ID animal`+`ID tumor`+Group+DPV~Timepoint) |
|
|
|
} |
|
|
|
dtemplate[,6:ncol(dtemplate)]<-"" |
|
|
|
} |
|
|
|
write.xlsx(dtemplate,file) |
|
|
|
} |
|
|
|
) |
|
|
|
|
|
|
|
# Análisis |
|
|
|
analysis<-reactiveValues() |
|
|
|
analysis$taula<-NULL |
|
|
|
analysis$taula_def<-NULL |
|
|
|
observe({ |
|
|
|
if (!is.null(input$file_analy)){ |
|
|
|
analysis$taula<-read.xlsx(input$file_analy$datapath, sheet = 1, check.names = F, sep.names = " ") |
|
|
|
} |
|
|
|
}) |
|
|
|
output$ntable<-renderTable({ |
|
|
|
if (!is.null(input$file_analy)){ |
|
|
|
observeEvent(analysis$taula, {}) |
|
|
|
stattest<-"dunn" |
|
|
|
oneside<-"" |
|
|
|
cutoff<-750 |
|
|
|
|
|
|
|
table<-analysis$taula |
|
|
|
if ("ID.animal" %in% colnames(table)){table<-rename(table, "ID animal"=`ID.animal`)} |
|
|
|
if ("ID" %in% colnames(table)){table<-rename(table, "ID animal"=ID)} |
|
|
|
if ("ID.tumor" %in% colnames(table)){table<-rename(table, "ID tumor"=`ID.tumor`)} |
|
|
|
# table[table$ID.tumor == "R","0"]<-NA |
|
|
|
col_nodays<-c("ID", "Cage","Group", "ID.animal","ID animal", "ID.tumor", "ID tumor", "TS","DPV", "Absorbance") |
|
|
|
if (length(grep(0, colnames(table)[!colnames(table) %in% col_nodays])) == 0){ |
|
|
|
table["0"]<-0 |
|
|
|
} |
|
|
|
table<-melt(table, id=colnames(table)[colnames(table) %in% col_nodays], variable.name = "Timepoint") |
|
|
|
table$Timepoint<-gsub("[A-Za-z ]","",table$Timepoint) |
|
|
|
if ("DPV" %in% colnames(table)){ |
|
|
|
table<-dcast(table, Cage+`ID animal`+`ID tumor`+Group+Timepoint~DPV, value.var = "value") |
|
|
|
table$Major<-table$Major/1000 |
|
|
|
table$Minor<-table$Minor/1000 |
|
|
|
table["Volume"]<-((table$Major*table$Minor*table$Minor)*(pi/6))*1000 |
|
|
|
} |
|
|
|
if ("TS" %in% colnames(table)){ |
|
|
|
table<-dcast(table, Cage+`ID animal`+`ID tumor`+Group+Timepoint~TS, value.var = "value") |
|
|
|
table["Volume"]<-table$`TS-Deep`*table$`TS-Length`*table$`TS-Width`*pi/6 |
|
|
|
} |
|
|
|
if (!"Volume" %in% colnames(table)){table<-rename(table, "Volume"=value)} |
|
|
|
table<-table %>% filter(!is.na(Group)) |
|
|
|
table$Timepoint<-factor(table$Timepoint, levels=mixedsort(as.numeric(as.character(unique(table$Timepoint))))) |
|
|
|
analysis$taula_def<-table |
|
|
|
table_plot<-dcast(dcast(table %>% filter(!is.na(Volume)), `ID animal`+Group+Timepoint~., value.var = "Volume", fun.aggregate = mean), Group~Timepoint) |
|
|
|
table_plot |
|
|
|
} |
|
|
|
}) |
|
|
|
output$cin_group<-renderPlot({ |
|
|
|
if (!is.null(input$file_analy) & !is.null(analysis$taula_def)){ |
|
|
|
observeEvent(analysis$taula_def, {}) |
|
|
|
table<-analysis$taula_def |
|
|
|
if (input$vacc == "Sí"){ |
|
|
|
ggplot(table, aes(as.numeric(as.character(Timepoint)), Volume, color=Group, group=Group))+ |
|
|
|
geom_errorbar(stat="summary", width=0.05)+ |
|
|
|
geom_line(stat="summary")+ |
|
|
|
geom_point(stat="summary")+ |
|
|
|
facet_grid(factor(`ID tumor`, labels = c("Vaccination", "Rechallenge"))~., scale="free_y")+ |
|
|
|
labs(x="Days after tumor challenge")+ |
|
|
|
scale_y_continuous(expand = expansion(mult = c(0,0.05)))+ |
|
|
|
scale_x_continuous(expand = expansion(mult = c(0,0.05)), limits = c(0, (round(max(as.numeric(as.character(table$Timepoint))) / 5)+1)*5))+ |
|
|
|
theme_bw() |
|
|
|
}else{ |
|
|
|
ggplot(table, aes(Timepoint, Volume, color=Group, group=Group))+ |
|
|
|
geom_errorbar(stat="summary",width=0.05)+ |
|
|
|
geom_line(stat="summary")+ |
|
|
|
geom_point(stat="summary")+ |
|
|
|
labs(x="Days after tumor challenge")+ |
|
|
|
scale_y_continuous(expand = expansion(mult = c(0,0.05)))+ |
|
|
|
theme_bw()+ |
|
|
|
theme(axis.text.x=element_text(angle=45, hjust=1)) |
|
|
|
} |
|
|
|
|
|
|
|
} |
|
|
|
}) |
|
|
|
output$cin_indiv<-renderPlot({ |
|
|
|
if (!is.null(input$file_analy) & !is.null(analysis$taula_def)){ |
|
|
|
observeEvent(analysis$taula_def, {}) |
|
|
|
table<-analysis$taula_def |
|
|
|
if (input$vacc == "Sí"){ |
|
|
|
ggplot(table, aes(as.numeric(as.character(Timepoint)), Volume, color=Group, group=`ID animal`))+ |
|
|
|
# geom_errorbar(stat="summary", width=0.05)+ |
|
|
|
geom_line()+ |
|
|
|
geom_point()+ |
|
|
|
scale_y_continuous(expand = expansion(mult = c(0,0.05)))+ |
|
|
|
scale_x_continuous(expand = expansion(mult = c(0,0.05)), limits = c(0, (round(max(as.numeric(as.character(table$Timepoint))) / 5)+1)*5))+ |
|
|
|
facet_grid(factor(`ID tumor`, labels = c("Vaccination", "Rechallenge"))~Group, scale="free_y")+ |
|
|
|
labs(x="Days after tumor challenge")+ |
|
|
|
theme_bw() |
|
|
|
}else{ |
|
|
|
ggplot(table, aes(Timepoint, Volume, color=Group, group=`ID animal`))+ |
|
|
|
# geom_errorbar(stat="summary", width=0.05)+ |
|
|
|
geom_line()+ |
|
|
|
geom_point()+ |
|
|
|
scale_y_continuous(expand = expansion(mult = c(0,0.05)))+ |
|
|
|
# scale_x_continuous(expand = expansion(mult = c(0,0.05)), limits = c(0, (round(max(as.numeric(as.character(table$Timepoint))) / 5)+1)*5))+ |
|
|
|
facet_wrap(.~Group)+ |
|
|
|
labs(x="Days after tumor challenge")+ |
|
|
|
theme_bw()+ |
|
|
|
theme(axis.text.x=element_text(angle=45, hjust=1)) |
|
|
|
} |
|
|
|
} |
|
|
|
}) |
|
|
|
|
|
|
|
output$survival<-renderPlot({ |
|
|
|
if (!is.null(input$file_analy) & !is.null(analysis$taula_def)){ |
|
|
|
observeEvent(analysis$taula_def, {}) |
|
|
|
table<-analysis$taula_def |
|
|
|
if (input$vacc == "Sí"){ |
|
|
|
g<-list() |
|
|
|
for (side in c("L","R")){ |
|
|
|
tableR<-filter(table, `ID tumor` == side) %>% filter(!is.na(Volume)) |
|
|
|
endtime<-dcast(tableR %>% filter(Volume < cutoff), Cage+`ID animal`+`ID tumor`+Group~., value.var = "Timepoint", fun.aggregate = function(x){max(as.numeric(as.character(x)))}) %>% rename("end"=".") |
|
|
|
endtime["Dead"]<-dcast(tableR, Cage+`ID animal`+`ID tumor`+Group~., value.var = "Volume", fun.aggregate = function(x){max(as.numeric(as.character(x)))}) %>% pull(".") > input$cutoff |
|
|
|
table_tumor<<-endtime |
|
|
|
|
|
|
|
g[side]<-ggsurvplot(survfit(Surv(table_tumor$end, table_tumor$Dead) ~ table_tumor$Group, data=table_tumor), |
|
|
|
pval = T, pval.method = T, |
|
|
|
title = side, |
|
|
|
# legend.labs = paste(c("< median", ">= median"), "MICA"), |
|
|
|
ggtheme=theme_classic(base_size=15) |
|
|
|
# conf.int = TRUE, |
|
|
|
# Add risk table |
|
|
|
# risk.table = TRUE, |
|
|
|
# tables.height = 0.2, |
|
|
|
# tables.theme = theme_cleantable(), |
|
|
|
|
|
|
|
# Color palettes. Use custom color: c("#E7B800", "#2E9FDF"), |
|
|
|
# or brewer color (e.g.: "Dark2"), or ggsci color (e.g.: "jco") |
|
|
|
# palette = c("#E7B800", "#2E9FDF") |
|
|
|
) |
|
|
|
} |
|
|
|
do.call(grid.arrange, g) |
|
|
|
|
|
|
|
}else{ |
|
|
|
tableR<-table %>% filter(!is.na(Volume)) |
|
|
|
endtime<-dcast(tableR %>% filter(Volume < cutoff), `ID animal`+Group~., value.var = "Timepoint", fun.aggregate = function(x){max(as.numeric(as.character(x)))}) %>% rename("end"=".") |
|
|
|
endtime["Dead"]<-dcast(tableR, `ID animal`+Group~., value.var = "Volume", fun.aggregate = function(x){max(as.numeric(as.character(x)))}) %>% pull(".") > input$cutoff |
|
|
|
table_tumor<<-endtime |
|
|
|
|
|
|
|
g<-ggsurvplot(survfit(Surv(table_tumor$end, table_tumor$Dead) ~ table_tumor$Group, data=table_tumor), |
|
|
|
pval = T, pval.method = T, |
|
|
|
# legend.labs = paste(c("< median", ">= median"), "MICA"), |
|
|
|
ggtheme=theme_classic(base_size=15) |
|
|
|
# palette = c("#E7B800", "#2E9FDF") |
|
|
|
) |
|
|
|
g |
|
|
|
} |
|
|
|
} |
|
|
|
}) |
|
|
|
|
|
|
|
output$stats<-renderPrint({ |
|
|
|
stattest<-"dunn" |
|
|
|
oneside<-"" |
|
|
|
cutoff<-750 |
|
|
|
if (!is.null(input$file_analy) & !is.null(analysis$taula_def)){ |
|
|
|
observeEvent(analysis$taula_def, {}) |
|
|
|
table<-analysis$taula_def |
|
|
|
if (input$vacc == "No"){ |
|
|
|
table<-filter(table, !is.na(Volume)) |
|
|
|
summary(aov(Volume~Group+Timepoint+Error(`ID animal`), data=table)) |
|
|
|
}else{ |
|
|
|
for (side in c("L","R")){ |
|
|
|
tableR<-filter(table, `ID tumor` == side) %>% filter(!is.na(Volume)) |
|
|
|
if (length(unique(tableR$Volume)) > 1 & length(unique(tableR$Timepoint)) > 1){ |
|
|
|
print(paste0("Side: ",side)) |
|
|
|
# print(summary(aov(Volume~Group+Timepoint+Error(paste0(ID animal,Cage)), data=tableR))) |
|
|
|
print(summary(aov(Volume~Group+Timepoint+Error(`ID animal`), data=tableR))) |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
}) |
|
|
|
output$tab_stats<-renderTable({ |
|
|
|
stattest<-"dunn" |
|
|
|
oneside<-"" |
|
|
|
cutoff<-750 |
|
|
|
if (!is.null(input$file_analy) & !is.null(analysis$taula_def)){ |
|
|
|
table<-analysis$taula_def |
|
|
|
table_stats<-list() |
|
|
|
if (input$vacc == "No"){ |
|
|
|
table<-table%>%filter(!is.na(Volume)) |
|
|
|
if (length(unique(table$Volume)) > 1){ |
|
|
|
table_stats<-multi_stats(table, "Volume", "Timepoint", "Group", stat.test=stattest) |
|
|
|
} |
|
|
|
table_kw<-as.data.frame(matrix(nrow=0, ncol=2)) |
|
|
|
for (point in unique(table$Timepoint)){ |
|
|
|
len_group<-length(unique(table %>% filter(Timepoint == point) %>% pull(Group))) |
|
|
|
if (len_group > 1){ |
|
|
|
table_kw<-rbind(table_kw, data.frame(point,kruskal.test(table %>% filter(Timepoint == point) %>% pull(Volume), table %>% filter(Timepoint == point) %>% pull(Group))[3][[1]])) |
|
|
|
} |
|
|
|
} |
|
|
|
colnames(table_kw)<-c("Timepoint", "KW-p.val") |
|
|
|
table_stats<-merge(table_stats, table_kw) |
|
|
|
|
|
|
|
}else{ |
|
|
|
for (side in c("L","R")){ |
|
|
|
tableR<-filter(table, `ID tumor` == side) %>% filter(!is.na(Volume)) |
|
|
|
if (length(unique(tableR$Volume)) > 1){ |
|
|
|
table_stats[[side]]<-multi_stats(tableR, "Volume", "Timepoint", "Group", stat.test=stattest) |
|
|
|
} |
|
|
|
table_kw<-as.data.frame(matrix(nrow=0, ncol=2)) |
|
|
|
for (point in unique(tableR$Timepoint)){ |
|
|
|
len_group<-length(unique(tableR %>% filter(Timepoint == point) %>% pull(Group))) |
|
|
|
if (len_group > 1){ |
|
|
|
table_kw<-rbind(table_kw, data.frame(point,kruskal.test(tableR %>% filter(Timepoint == point) %>% pull(Volume), tableR %>% filter(Timepoint == point) %>% pull(Group))[3][[1]])) |
|
|
|
} |
|
|
|
} |
|
|
|
colnames(table_kw)<-c("Timepoint", "KW-p.val") |
|
|
|
table_stats[[side]]<-merge(table_stats[[side]], table_kw) |
|
|
|
} |
|
|
|
} |
|
|
|
table_stats_def<-bind_rows(table_stats, .id = "ID tumor") |
|
|
|
if (input$filter_stats == T){ |
|
|
|
table_stats_def %>% filter(p.adj < 0.05) |
|
|
|
}else{ |
|
|
|
table_stats_def |
|
|
|
} |
|
|
|
} |
|
|
|
}) |
|
|
|
|
|
|
|
output$expPlotUI<- renderUI({ |
|
|
|
observeEvent(analysis$taula_def, {}) |
|
|
|
if (!is.null(input$file_analy) & !is.null(analysis$taula_def)){ |
|
|
|
plotOutput("expPlot", width=paste0(input$width/10,"px"), height = paste0(input$height/10, "px")) |
|
|
|
} |
|
|
|
}) |
|
|
|
|
|
|
|
output$expPlot <- renderPlot({ |
|
|
|
observeEvent(analysis$taula_def, {}) |
|
|
|
if (!is.null(input$file_analy) & !is.null(analysis$taula_def)){ |
|
|
|
table<-analysis$taula_def |
|
|
|
|
|
|
|
if (input$fig_id %in% c("Cinética Grupo", "Cinética Individual")){ |
|
|
|
if (input$fig_id == "Cinética Grupo"){ |
|
|
|
if (input$vacc == "Sí"){ |
|
|
|
g<-ggplot(table, aes(as.numeric(as.character(Timepoint)), Volume, color=Group, group=Group))+ |
|
|
|
scale_x_continuous(expand = expansion(mult = c(0,0.05)), limits = c(0, (round(max(as.numeric(as.character(table$Timepoint))) / 5)+1)*5))+ |
|
|
|
facet_grid(factor(`ID tumor`, labels = c("Vaccination", "Rechallenge"))~., scale="free_y")+ |
|
|
|
theme_bw() |
|
|
|
}else{ |
|
|
|
g<-ggplot(table, aes(Timepoint, Volume, color=Group, group=Group))+ |
|
|
|
theme_bw() |
|
|
|
} |
|
|
|
} |
|
|
|
if (input$fig_id == "Cinética Individual"){ |
|
|
|
if (input$vacc == "Sí"){ |
|
|
|
g<-ggplot(table, aes(as.numeric(as.character(Timepoint)), Volume, color=Group, group=Group))+ |
|
|
|
scale_x_continuous(expand = expansion(mult = c(0,0.05)), limits = c(0, (round(max(as.numeric(as.character(table$Timepoint))) / 5)+1)*5))+ |
|
|
|
facet_grid(factor(`ID tumor`, labels = c("Vaccination", "Rechallenge"))~Group, scale="free_y")+ |
|
|
|
theme_bw() |
|
|
|
}else{ |
|
|
|
g<-ggplot(table, aes(Timepoint, Volume, color=Group, group=`ID animal`))+ |
|
|
|
facet_wrap(.~Group)+ |
|
|
|
theme_bw() |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
g<-g+geom_errorbar(stat="summary", width=input$`errorbar-width`)+ |
|
|
|
geom_line(stat="summary")+ |
|
|
|
geom_point(stat="summary", size=input$`point-size`)+ |
|
|
|
labs(x="Days after tumor challenge")+ |
|
|
|
scale_y_continuous(expand = expansion(mult = c(0,0.05))) |
|
|
|
|
|
|
|
if (input$theme == "BW"){ |
|
|
|
g<-g+theme_bw(base_size = input$`font-size`) |
|
|
|
} |
|
|
|
if (input$theme == "Classic"){ |
|
|
|
g<-g+theme_classic(base_size = input$`font-size`) |
|
|
|
} |
|
|
|
if (input$theme == "Default"){ |
|
|
|
g<-g+theme_gray(base_size = input$`font-size`) |
|
|
|
} |
|
|
|
# g<-g+theme(axis.text.x=element_text(angle=45, hjust=1)) |
|
|
|
if (input$legend == F){ |
|
|
|
g<-g+guides(color=FALSE, fill=FALSE) |
|
|
|
} |
|
|
|
if (input$colors != ""){ |
|
|
|
v_col<-strsplit(input$colors, ",")[[1]] |
|
|
|
g<-g+scale_color_manual(values=v_col)+ |
|
|
|
scale_fill_manual(values=v_col) |
|
|
|
} |
|
|
|
}else{ |
|
|
|
gg_color_hue <- function(n, l=65) { |
|
|
|
hues <- seq(15, 375, length=n+1) |
|
|
|
hcl(h=hues, l=l, c=100)[1:n] |
|
|
|
} |
|
|
|
if (input$vacc == "Sí"){ |
|
|
|
g<-list() |
|
|
|
count<-1 |
|
|
|
for (side in c("L","R")){ |
|
|
|
tableR<-filter(table, `ID tumor` == side) %>% filter(!is.na(Volume)) |
|
|
|
endtime<-dcast(tableR %>% filter(Volume < cutoff), Cage+`ID animal`+`ID tumor`+Group~., value.var = "Timepoint", fun.aggregate = function(x){max(as.numeric(as.character(x)))}) %>% rename("end"=".") |
|
|
|
endtime["Dead"]<-dcast(tableR, Cage+`ID animal`+`ID tumor`+Group~., value.var = "Volume", fun.aggregate = function(x){max(as.numeric(as.character(x)))}) %>% pull(".") > input$cutoff |
|
|
|
table_tumor<<-endtime |
|
|
|
if (input$colors != ""){ |
|
|
|
col<-input$colors |
|
|
|
}else{ |
|
|
|
col<-gg_color_hue(length(unique(endtime$Group))) |
|
|
|
} |
|
|
|
g[[count]]<-ggsurvplot(survfit(Surv(table_tumor$end, table_tumor$Dead) ~ table_tumor$Group, data=table_tumor), |
|
|
|
pval = T, pval.method = T, |
|
|
|
title = side, |
|
|
|
# legend.labs = paste(c("< median", ">= median"), "MICA"), |
|
|
|
ggtheme=theme_classic(base_size=input$`font-size`), |
|
|
|
palette = col |
|
|
|
) |
|
|
|
count<-count+1 |
|
|
|
} |
|
|
|
g_surv_vacc<-g |
|
|
|
|
|
|
|
}else{ |
|
|
|
if (input$colors != ""){ |
|
|
|
col<-input$colors |
|
|
|
}else{ |
|
|
|
col<-gg_color_hue(length(unique(table_tumor$Group))) |
|
|
|
} |
|
|
|
g<-ggsurvplot(survfit(Surv(table_tumor$end, table_tumor$Dead) ~ table_tumor$Group, data=table_tumor), |
|
|
|
pval = T, pval.method = T, |
|
|
|
# legend.labs = paste(c("< median", ">= median"), "MICA"), |
|
|
|
ggtheme=theme_classic(base_size=input$`font-size`), |
|
|
|
palette = col |
|
|
|
) |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
if (input$vacc == "Sí" & input$fig_id == "Survival"){ |
|
|
|
dades$plot<<-g_surv_vacc |
|
|
|
arrange_ggsurvplots(g, nrow=2, ncol=1) |
|
|
|
}else{ |
|
|
|
dades$plot<<-g |
|
|
|
g |
|
|
|
} |
|
|
|
} |
|
|
|
}, res=72) |
|
|
|
|
|
|
|
output$downloadPicture <- downloadHandler( |
|
|
|
filename = function() { |
|
|
|
paste("Figura", ".png", sep="") |
|
|
|
}, |
|
|
|
content = function(file){ |
|
|
|
# tempReport <- file.path(tempdir(), "elispots.Rmd") |
|
|
|
# file.copy("elispots.Rmd", tempReport, overwrite = TRUE) |
|
|
|
png(file, width = input$width, height=input$height, units = "px", res=720) |
|
|
|
if (input$fig_id == "Survival"){ |
|
|
|
if (input$vacc == "Sí"){ |
|
|
|
arrange_ggsurvplots(dades$plot, nrow=2, ncol=1) |
|
|
|
}else{ |
|
|
|
arrange_ggsurvplots(list(dades$plot), ncol=1) |
|
|
|
} |
|
|
|
}else{plot(dades$plot)} |
|
|
|
dev.off() |
|
|
|
|
|
|
|
}) |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
# Run the application |
|
|
|
shinyApp(ui = ui, server = server) |